8 resultados para Multicultural Diversity and Roundtable

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Garlic is a spice and a medicinal plant; hence, there is an increasing interest in 'developing' new varieties with different culinary properties or with high content of nutraceutical compounds. Phenotypic traits and dominant molecular markers are predominantly used to evaluate the genetic diversity of garlic clones. However, 24 SSR markers (codominant) specific for garlic are available in the literature, fostering germplasm researches. In this study, we genotyped 130 garlic accessions from Brazil and abroad using 17 polymorphic SSR markers to assess the genetic diversity and structure. This is the first attempt to evaluate a large set of accessions maintained by Brazilian institutions. A high level of redundancy was detected in the collection (50 % of the accessions represented eight haplotypes). However, non-redundant accessions presented high genetic diversity. We detected on average five alleles per locus, Shannon index of 1.2, HO of 0.5, and HE of 0.6. A core collection was set with 17 accessions, covering 100 % of the alleles with minimum redundancy. Overall FST and D values indicate a strong genetic structure within accessions. Two major groups identified by both model-based (Bayesian approach) and hierarchical clustering (UPGMA dendrogram) techniques were coherent with the classification of accessions according to maturity time (growth cycle): early-late and midseason accessions. Assessing genetic diversity and structure of garlic collections is the first step towards an efficient management and conservation of accessions in genebanks, as well as to advance future genetic studies and improvement of garlic worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

• We developed the first microsatellites for Passiflora setacea and characterized new sets of markers for P. edulis and P. cincinnata, enabling further genetic diversity studies to support the conservation and breeding of passion fruit species. • We developed 69 microsatellite markers and, in conjunction with assessments of cross-amplification using primers available from the literature, present 43 new polymorphic microsatellite loci for three species of Passiflora. The mean number of alleles per locus was 3.1, and the mean values of the expected and observed levels of heterozygosity were 0.406 and 0.322, respectively. • These microsatellite markers will be valuable tools for investigating the genetic diversity and population structure of wild and commercial species of passion fruit (Passiflora spp.) and may be useful for developing conservation and improvement strategies by contributing to the understanding of the mating system and hybridization within the genus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

• Microsatellite primers were developed for the tree species Genipa americana (Rubiaceae) for further population genetic studies. • We identified 144 clones containing 65 repeat motifs from a genomic library enriched for (CT)8 and (GT)8 motifs. Primer pairs were developed for 32 microsatellite loci and validated in 40 individuals of two natural G. americana populations. Seventeen loci were polymorphic, revealing from three to seven alleles per locus. The observed and expected heterozygosities ranged from 0.24 to 1.00 and from 0.22 to 0.78, respectively. • The 17 primers identified as polymorphic loci are suitable to study the genetic diversity and structure, mating system, and gene flow in G. americana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Passiflora species are distributed throughout Latin America, and Brazil and Colombia serve as the centers of diversity for this genus. We performed cross-species amplification to evaluate 109 microsatellite loci in 14 Passiflora species and estimated the diversity and genetic structure of Passiflora cincinnata, Passiflora setaceae and Passiflora edulis. A total of 127 accessions, including 85 accessions of P. edulis, a commercial species, and 42 accessions of 13 wild species, were examined. The cross-species amplification was effective for obtaining microsatellite loci (average cross-amplification of 70%). The average number of alleles per locus (five) was relatively low, and the average diversity ranged from 0.52 in P. cincinnata to 0.32 in P. setacea. The Bayesian analyses indicated that the P. cincinnata and P. setacea accessions were distributed into two groups, and the P. edulis accessions were distributed into five groups. Private alleles were identified, and suggestions for core collections are presented. Further collections are necessary, and the information generated may be useful for breeding and conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the flow of diaspores is fundamental for determining plant population dynamics in a particular habitat, and a lack of seeds is a limiting factor in forest regeneration, especially in isolated forest fragments. Bamboo dominance affects forest structure and dynamics by suppressing or delaying the recruitment of and colonization by tree species as well as by inhibiting the survival and growth of adult trees. The goal of the present study was to determine whether dominance of the bamboo species Aulonemia aristulata (Döll) McClure in the forest understory influences species abundance and composition. We examined the seed rain at two noncontiguous sites (1.5 km apart) within an urban forest fragment, with and without bamboo dominance (BD+ and BD- areas, respectively). Sixty seed traps (0.5 m², with a 1-mm mesh) were set in the BD+ and BD- areas, and the seed rain was sampled from January to December 2007. Diaspores were classified according to dispersal syndrome, growth form and functional type of the species to which they belonged. There were significant differences between the two areas in terms of seed density, species diversity and dispersal syndrome. The BD+ area showed greater seed density and species diversity. In both areas, seed distribution was limited primarily by impaired dispersal. Bamboo dominance and low tree density resulted in fewer propagules in the seed rain. Our results suggest that low availability of seeds in the rain does not promote the maintenance of a degraded state, characterized by the presence of bamboo.