5 resultados para Misturas polimericas
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
This work illustrates the modeling procedure for a solvent mixture using the simplex- centroid approach. The selected experiment was the optimization of the peak current observed in the direct determination of nickel by anodic stripping voltammetry (ASV) in a solvent mixture composed of N,N-dimethylformamide, ethanol and water. The text is presented in a tutorial way, showing in detail the several steps which must be followed in such a process. Since not all possible mixtures lead to a measurable instrumental response, pseudocomponents had to be used to rescale the experimental design. This also allows to show how to apply this tool, usually troublesome for non-specialists in mixture modeling procedures.
Resumo:
This work was done with the objective of studying some physical and mechanical characteristics of the sugarcane bagasse ash added to a soil-cement mixture, in order to obtain an alternative construction material. The sugarcane bagasse ash pre-treatment included both sieving and grinding, before mixing with soil and cement. Different proportions of cement-ash were tested by determining its standard consistence and its compressive resistance at 7 and 28 days age. The various treatments were subsequently applied to the specimens molded with different soil-cement-ash mixtures which in turns were submitted to compaction, unconfined compression and water absorption laboratory tests. The results showed that it is possible to replace up to 20% of Portland cement by sugarcane bagasse ash without any damage to the mixture's compressive strength.
Resumo:
The main objective of this work is the study of the effect of rice husk addition on the physical and mechanical properties of soil-cement, in order to obtain an alternative construction material. The rice husk preparation consisted of grinding, sieving, and the pre-treatment with lime solution. The physical characteristics of the soil and of the rice husk were determined. Different amounts of soil, cement and rice husk were tested by compaction and unconfined compression. The specimens molded according to the treatments applied to the mixtures were subsequently submitted to compression testing and to tensile splitting cylinder testing at 7 and 28 days of age and to water absorption testing. After determining its physical and mechanical characteristics, the best results were obtained for the soil + 12% (cement + rice husk) mixture. The results showed a promising use as an alternative construction material.
Resumo:
The rice husk and its ash are abundant and renewable and can be used to obtain alternative building materials. An increase in the consumption of such waste could help minimize the environmental problems from their improper disposal. This study aimed to evaluate the use of ashes as a cargo mineral (filler). However, the rice husk chemically interferes in the conduct of the based cement mixtures. Thus, different mixes cement-rice husk with and without the addition of ash were evaluated in order to highlight the influence of its components (husk; ash), which could otherwise be excluded or be underestimated. Cylindrical samples (test of simple compression and traction by diametrical compression) and samples extracted from manufactured pressed board (test of bending and parallel compression to the surface), were used to evaluate the behavior of different mixtures of components (rice hush; RHA - rice husk ahs). The results of the mechanical tests showed, in general, there is not a statistical difference between the mixtures, which are associated with the chemical suppressive effect of the rice husk ash. The mixture of rice husk of 10 mm, with an addition of 35% of the rice husk ash, is notable for allowing the highest consumption of rice husk and rice husk ash, to reduce 25% the consumption of cement and to allow the storage (without emissions to the atmosphere), around 1.9 ton of CO2 per ton of cement consumed, thus contributing to the reduction of CO2 emissions, which can stimulate rural constructions under an ecological point of view.
Resumo:
This work proposes to determine the water activity and the freezing point depression of tangerine, pineapple and lemon juices at various concentrations (10-55oBrix) and to achieve a correlation between these properties. The freezing point depression was determined with a LAKTRON cryoscope and common laboratory materials. The water activity was determined with a DECAGON CX-2 hygrometer in the temperature range of 15 to 30oC. With the results, the adjustment to CHEN (1987) water activity prediction equation to non-electrolyte mixtures was verified, through the calculation of the variation coefficient (CV). Being CV smaller than 3% for the proposed model, it can be said that the experimental data have adjusted well to the prediction equation. The water activity and the freezing point depression was correlated for tangerine, pineapple and lemon juices and r2 values were higher than 99%. Therefore, it is possible to obtain the water activity by knowing the freezing point depression of studied juices.