3 resultados para Miller, Michael, d. 1739
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
We report on a new analysis of neutrino oscillations in MINOS using the complete set of accelerator and atmospheric data. The analysis combines the ν(μ) disappearance and ν(e) appearance data using the three-flavor formalism. We measure |Δm(32)(2)| = [2.28-2.46] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.35-0.65 (90% C.L.) in the normal hierarchy, and |Δm(32)(2)| = [2.32-2.53] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.34-0.67 (90% C.L.) in the inverted hierarchy. The data also constrain δ(CP), the θ(23} octant degeneracy and the mass hierarchy; we disfavor 36% (11%) of this three-parameter space at 68% (90%) C.L.
Resumo:
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Resumo:
The Structural Genomics Consortium (SGC) and its clinical, industry and disease-foundation partners are launching open-source preclinical translational medicine studies.