5 resultados para Measurement uncertainty

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510  GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement instruments are an integral part of clinical practice, health evaluation and research. These instruments are only useful and able to present scientifically robust results when they are developed properly and have appropriate psychometric properties. Despite the significant increase of rating scales, the literature suggests that many of them have not been adequately developed and validated. The scope of this study was to conduct a narrative review on the process of developing new measurement instruments and to present some tools which can be used in some stages of the development process. The steps described were: I-The establishment of a conceptual framework, and the definition of the objectives of the instrument and the population involved; II-Development of the items and of the response scales; III-Selection and organization of the items and structuring of the instrument; IV-Content validity, V-Pre-test. This study also included a brief discussion on the evaluation of the psychometric properties due to their importance for the instruments to be accepted and acknowledged in both scientific and clinical environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to quantify lycopene and β-carotene in freeze dried tomato pulp by high performance liquid chromatography (HLPC) was validated according to the criteria of selectivity, sensitivity, precision and accuracy, and uncertainty estimation of measurement was determined with data obtained in the validation. The validated method presented is selective in terms of analysis, and it had a good precision and accuracy. Detection limit for lycopene and β-carotene was 4.2 and 0.23 mg 100 g-1, respectively. The estimation of expanded uncertainty (K = 2) for lycopene was 104 ± 21 mg 100 g-1 and for β-carotene was 6.4 ± 1.5 mg 100 g-1.