2 resultados para Maize and U. ruziziensis intercropped

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urochloa humidicola is a warm-season grass commonly used as forage in the tropics and is recognized for its tolerance to seasonal flooding. This grass is an important forage species for the Cerrado and Amazon regions of Brazil. U. humidicola is a polyploid species with variable ploidy (6X-9X) and facultative apomixis with high phenotypic plasticity. However, this apomixis and ploidy, as well as the limited knowledge of the genetic basis of the germplasm collection, have constrained genetic breeding activities, yet microsatellite markers may enable a better understanding of the species' genetic composition. This study aimed to develop and characterize new polymorphic microsatellite molecular markers in U. humidicola and to evaluate their transferability to other Urochloa species. A set of microsatellite markers for U. humidicola was identified from two new enriched genomic DNA libraries: the first library was constructed from a single sexual genotype and the second from a pool of eight apomictic genotypes selected on the basis of previous results. Of the 114 loci developed, 72 primer pairs presented a good amplification product, and 64 were polymorphic among the 34 genotypes tested. The number of bands per simple sequence repeat (SSR) locus ranged from 1 to 29, with a mean of 9.6 bands per locus. The mean polymorphism information content (PIC) of all loci was 0.77, and the mean discrimination power (DP) was 0.87. STRUCTURE analysis revealed differences among U. humidicola accessions, hybrids, and other Urochloa accessions. The transferability of these microsatellites was evaluated in four species of the genus, U. brizantha, U. decumbens, U. ruziziensis, and U. dictyoneura, and the percentage of transferability ranged from 58.33% to 69.44% depending on the species. This work reports new polymorphic microsatellite markers for U. humidicola that can be used for breeding programs of this and other Urochloa species, including genetic linkage mapping, quantitative trait loci identification, and marker-assisted selection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetically modified foods are a major concern around the world due to the lack of information concerning their safety and health effects. This work evaluates differences, at the proteomic level, between two types of crop samples: transgenic (MON810 event with the Cry1Ab gene, which confers resistance to insects) and non-transgenic maize flour commercialized in Brazil. The 2-D DIGE technique revealed 99 differentially expressed spots, which were collected in 2-D PAGE gels and identified via mass spectrometry (nESI-QTOF MS/MS). The abundance of protein differences between the transgenic and non-transgenic samples could arise from genetic modification or as a result of an environmental influence pertaining to the commercial sample. The major functional category of proteins identified was related to disease/defense and, although differences were observed between samples, no toxins or allergenic proteins were found.