21 resultados para MODIFIED PT(111) ELECTRODES
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Two single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (θPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on θPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings.
Resumo:
The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt(2+) solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.
Resumo:
TiO2 and TiO2/WO3 electrodes, irradiated by a solar simulator in configurations for heterogeneous photocatalysis (HP) and electrochemically-assisted HP (EHP), were used to remediate aqueous solutions containing 10 mg L(-1) (34 μmol L(-1)) of 17-α-ethinylestradiol (EE2), active component of most oral contraceptives. The photocatalysts consisted of 4.5 μm thick porous films of TiO2 and TiO2/WO3 (molar ratio W/Ti of 12%) deposited on transparent electrodes from aqueous suspensions of TiO2 particles and WO3 precursors, followed by thermal treatment at 450 (°)C. First, an energy diagram was organized with photoelectrochemical and UV-Vis absorption spectroscopy data and revealed that EE2 could be directly oxidized by the photogenerated holes at the semiconductor surfaces, considering the relative HOMO level for EE2 and the semiconductor valence band edges. Also, for the irradiated hybrid photocatalyst, electrons in TiO2 should be transferred to WO3 conduction band, while holes move toward TiO2 valence band, improving charge separation. The remediated EE2 solutions were analyzed by fluorescence, HPLC and total organic carbon measurements. As expected from the energy diagram, both photocatalysts promoted the EE2 oxidation in HP configuration; after 4 h, the EE2 concentration decayed to 6.2 mg L(-1) (35% of EE2 removal) with irradiated TiO2 while TiO2/WO3 electrode resulted in 45% EE2 removal. A higher performance was achieved in EHP systems, when a Pt wire was introduced as a counter-electrode and the photoelectrodes were biased at +0.7 V; then, the EE2 removal corresponded to 48 and 54% for the TiO2 and TiO2/WO3, respectively. The hybrid TiO2/WO3, when compared to TiO2 electrode, exhibited enhanced sunlight harvesting and improved separation of photogenerated charge carriers, resulting in higher performance for removing this contaminant of emerging concern from aqueous solution.
Resumo:
To compare time and risk to biochemical recurrence (BR) after radical prostatectomy of two chronologically different groups of patients using the standard and the modified Gleason system (MGS). Cohort 1 comprised biopsies of 197 patients graded according to the standard Gleason system (SGS) in the period 1997/2004, and cohort 2, 176 biopsies graded according to the modified system in the period 2005/2011. Time to BR was analyzed with the Kaplan-Meier product-limit analysis and prediction of shorter time to recurrence using univariate and multivariate Cox proportional hazards model. Patients in cohort 2 reflected time-related changes: striking increase in clinical stage T1c, systematic use of extended biopsies, and lower percentage of total length of cancer in millimeter in all cores. The MGS used in cohort 2 showed fewer biopsies with Gleason score ≤ 6 and more biopsies of the intermediate Gleason score 7. Time to BR using the Kaplan-Meier curves showed statistical significance using the MGS in cohort 2, but not the SGS in cohort 1. Only the MGS predicted shorter time to BR on univariate analysis and on multivariate analysis was an independent predictor. The results favor that the 2005 International Society of Urological Pathology modified system is a refinement of the Gleason grading and valuable for contemporary clinical practice.
Resumo:
Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species.
Resumo:
To evaluate the modified US7 score (MUS7 score SYN) in the assessment of patients with early rheumatoid arthritis (ERA). In addition, dorsal and palmar recesses of the wrists as well as of small joints of the hands and feet were examined for the presence of synovitis by means of a global assessment of joints. The study sample comprised 32 patients treated for arthritis, with an average disease duration of 13 months. An ultrasound machine with high frequency transducer was used. Hands were also X-rayed and analysed by Larsen score. Out of the 832 examined joints, synovitis was detected in 173 (20,79%), tenosynovitis in 22 (4,91%), and erosions in 3 (1,56%). Synovitis was predominantly detected in the dorsal recess (73,38%) of MCP and PIP joints, when compared with palmar recess (26%). The presence of synovitis in the joints evaluated correlated with clinical (HAQ-DI, DAS28), laboratory (ACPA, RF, CRP), and ultrasound results (r = 0,37 to r = 0,42; p = 0,04 to p = 0,003). We found correlation of the MUS7 score SYN of the gray scale US or of the power Doppler US with DAS28 (PCR) values (r = 0,38; p = 0,0332), and with CRP results (r = 0,39; p = 0,0280), respectively. The dorsal recess, the wrist, and small joints can be considered as important sites to detect synovitis by the MUS7 score SYN in patients with ERA.
Resumo:
Didanosine-loaded chitosan microspheres were developed applying a surface-response methodology and using a modified Maximum Likelihood Classification. The operational conditions were optimized with the aim of maintaining the active form of didanosine (ddI), which is sensitive to acid pH, and to develop a modified and mucoadhesive formulation. The loading of the drug within the chitosan microspheres was carried out by ionotropic gelation technique with sodium tripolyphosphate (TPP) as cross-linking agent and magnesium hydroxide (Mg(OH)2) to assure the stability of ddI. The optimization conditions were set using a surface-response methodology and applying the Maximum Likelihood Classification, where the initial chitosan concentration, TPP and ddI concentration were set as the independent variables. The maximum ddI-loaded in microspheres (i.e. 1433mg of ddI/g chitosan), was obtained with 2% (w/v) chitosan and 10% TPP. The microspheres depicted an average diameter of 11.42μm and ddI was gradually released during 2h in simulated enteric fluid.
Resumo:
To determine the effects of radiotherapy on salivary BPIFA expression and to investigate the role of BPIFA in the development of known radiotherapy side effects. Unstimulated whole-mouth saliva was collected from 45 cancer patients (1 week before treatment, during the treatment, and 1 week after completion of radiotherapy) and from 20 controls. BPIFA1 and BPIFA2 expression was detected by western blotting and analyzed along with clinicopathologic data and side effects from the radiotherapy. A facial radiation field was associated with lower salivary flow during and after radiotherapy and correlated with side effects, mainly mucositis. Salivary BPIFA1 expression levels were similar between the control group and the patient group before treatment. On the other hand, BPIFA2 levels were higher in the patient group before treatment compared with the control group. BPIFA concentration was modified by radiotherapy as BPIFA1 levels increased (P = .0081) and BPIFA2 decreased (P < .0001). Higher levels of BPIFA1 were associated with the presence of mucositis (P = .0363) and its severity (P = .0500). The present study found that levels of BPIFA1 and glycosylated forms of BPIFA2 are affected by radiotherapy, suggesting that these proteins may play a role in the oral microenvironment in irradiated patients with head and neck cancer.
Resumo:
The adsorption capacity of alpha-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methyene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable.
Resumo:
This paper describes the recent progress in the development of polymeric membranes for ion-selective electrodes. The importance of knowing the mechanism of potential development in membranes for ion-selective electrodes to reach lower detection limits and improve selectivity are discussed. Recent advances and future trends of research on ion-selective electrodes are also reported.
Resumo:
The copper and cadmium complexation properties in natural sediment suspensions of reservoirs of the Tietê River were studied using the solid membrane copper and cadmium ion-selective electrodes. The complexation and the average conditional stability constants were determined under equilibrium conditions at pH=6.00 ± 0.05 in a medium of 1.0 mol L-1 sodium nitrate, using the Scatchard method. The copper and cadmium electrodes presented Nernstian behavior from 1x10-6 to 1x10-3 mol L-1 of total metal concentration. Scatchard graphs suggest two classes of binding sites for both metals. A multivariate study was done to correlate the reservoirs and the variables: complexation properties, size, total organic carbon, volatile acid sulfide, E II and pH.
Resumo:
This review reports the application of inorganic and organic polymeric materials for cation removal by using nitrogenated basic centers. The data demonstrate the importance of the desired groups when free or immobilized on natural or synthesized inorganic polymers through silanol groups. Thus, the most studied silica gel is followed by natural crysotile and talc polymers, and the synthesized mesopore silicas, talc-like, silicic acids, phosphates and phyllosilicates. The organic natural biopolymeric chitin and cellulose were chemically modified to improve the availability of the amine groups or the reactivity with desirable molecules to enlarge the content of basic centers. The cation removal takes place at the solid/liquid interface and some interactive effects have their thermodynamic data determined.
Resumo:
High-temperature liquid chromatography (HTLC) is a technique that presents a series of advantages in liquid phase separations, such as: reduced analysis time, reduced pressure drop, reduced asymmetry factors, modified retentions, controlled selectivities, better efficiencies and improved detectivities, as well as permitting green chromatography. The practical limitations that relate to instrumentation and to stationary phase instability are being resolved and this technique is now ready to be applied for routine determinations.
Resumo:
The gravimetric and electrochemical tests are the most common techniques used in determining the corrosion rate. However, the use of electrochemical polarization is limited to electrolytes with sufficient conductivity for which Tafel curves are linear. In this study, we investigated a technique in which working microelectrodes of AISI 1020 steel were used to obtain the Tafel curves in diesel oil. The strategy was to reduce the electrode area and hence the ohmic drop. The diameter of the microelectrode was reduced to a value where the compensation of the Tafel curves became unnecessary. The results showed that for electrodes with diameters below 50 μm, the ohmic drop tends to a minimum and independent of the microelectrode diameter.
Resumo:
This research studied the effect of low density polyethylene packaging and storage temperature on the preservation of fresh-cut (minimally processed) cabbage. The cabbages, previously cooled to a temperature of 10 ºC, were selected, washed, cut in four parts (with the central stalk removed), sanitized, cut in strips, rinsed, put in the centrifuge, weighed and stored in plastic packaging of low density polyethylene (70 µm), and then stored in cold chambers at temperatures of 1 and 10 ºC for 20 days. The following aspects were evaluated: carbon dioxide, oxygen and ethylene in the internal atmosphere of the package as well as, pH, titratable acidity, total soluble solids, vitamin C, loss of fresh mass and the total soluble solids/acidity in the fresh-cut cabbage ratio. The experimental design was entirely casual, with three repetitions. The analysis parameters, except for the vitamin C, loss of fresh mass and ethylene, presented significant variation between the temperatures and days of storage. The cabbage stored at a temperature of 1 ºC presented a shelf life of around 15 days, significantly higher than that stored at 10 ºC. At this temperature, on the 8th day of storage, the product was completely decayed, unfit for commercialization or consumption.