2 resultados para Li_8SiN_4-Li_3N-BN
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.
Resumo:
Approximately 7.2% of the Atlantic rainforest remains in Brazil, with only 16% of this forest remaining in the State of Rio de Janeiro, all of it distributed in fragments. This forest fragmentation can produce biotic and abiotic differences between edges and the fragment interior. In this study, we compared the structure and richness of tree communities in three habitats - an anthropogenic edge (AE), a natural edge (NE) and the fragment interior (FI) - of a fragment of Atlantic forest in the State of Rio de Janeiro, Brazil (22°50'S and 42°28'W). One thousand and seventy-six trees with a diameter at breast height > 4.8 cm, belonging to 132 morphospecies and 39 families, were sampled in a total study area of 0.75 ha. NE had the greatest basal area and the trees in this habitat had the greatest diameter:height allometric coefficient, whereas AE had a lower richness and greater variation in the height of the first tree branch. Tree density, diameter, height and the proportion of standing dead trees did not differ among the habitats. There was marked heterogeneity among replicates within each habitat. These results indicate that the forest interior and the fragment edges (natural or anthropogenic) do not differ markedly considering the studied parameters. Other factors, such as the age from the edge, type of matrix and proximity of gaps, may play a more important role in plant community structure than the proximity from edges.