8 resultados para LIGHT-EMITTING POLYMERS
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The micellization of a homologous series of zwitterionic surfactants, a group of sulfobetaines, was studied using isothermal titration calorimetry (ITC) in the temperature range from 15 to 65 °C. The increase in both temperature and the alkyl chain length leads to more negative values of ΔGmic(0) , favoring the micellization. The entropic term (ΔSmic(0)) is predominant at lower temperatures, and above ca. 55-65 °C, the enthalpic term (ΔHmic(0)) becomes prevalent, figuring a jointly driven process as the temperature increases. The interaction of these sulfobetaines with different polymers was also studied by ITC. Among the polymers studied, only two induced the formation of micellar aggregates at lower surfactant concentration: poly(acrylic acid), PAA, probably due to the formation of hydrogen bonds between the carboxylic group of the polymer and the sulfonate group of the surfactant, and poly(sodium 4-styrenesulfonate), PSS, probably due to the incorporation of the hydrophobic styrene group into the micelles. The prevalence of the hydrophobic and not the electrostatic contributions to the interaction between sulfobetaine and PSS was confirmed by an increased interaction enthalpy in the presence of electrolytes (NaCl) and by the observation of a significant temperature dependence, the latter consistent with the proposed removal of hydrophobic groups from water.
Resumo:
Facial cosmetic procedures are increasingly requested, and dermal filler materials have been widely used as a nonsurgical option since the 1980s. However, injectable fillers have been implicated in local adverse reactions. Therefore, the aim of this article was to describe the use of fine needle aspiration cytology (FNAC) in the diagnosis of foreign-body reactions to the perioral injection of dermal fillers. A 69-year-old woman presented with a painful nodule on her right nasolabial fold. Intraoral FNAC was performed, and cytologic smears were examined under optical and polarized light microscopy, showing birefringent microspheres, confirming the diagnosis of an adverse reaction caused by polymethyl methacrylate filler. FNAC is a less invasive method to confirm the diagnosis of adverse reactions caused by perioral cosmetic dermal fillers.
Resumo:
Transfer of reaction products formed on the surfaces of two mutually rubbed dielectric solids makes an important if not dominating contribution to triboelectricity. New evidence in support of this statement is presented in this report, based on analytical electron microscopy coupled to electrostatic potential mapping techniques. Mechanical action on contacting surface asperities transforms them into hot-spots for free-radical formation, followed by electron transfer producing cationic and anionic polymer fragments, according to their electronegativity. Polymer ions accumulate creating domains with excess charge because they are formed at fracture surfaces of pulled-out asperities. Another factor for charge segregation is the low polymer mixing entropy, following Flory and Huggins. The formation of fractal charge patterns that was previously described is thus the result of polymer fragment fractal scatter on both contacting surfaces. The present results contribute to the explanation of the centuries-old difficulties for understanding the triboelectric series and triboelectricity in general, as well as the dissipative nature of friction, and they may lead to better control of friction and its consequences.
Resumo:
Current data indicate that the size of high-density lipoprotein (HDL) may be considered an important marker for cardiovascular disease risk. We established reference values of mean HDL size and volume in an asymptomatic representative Brazilian population sample (n=590) and their associations with metabolic parameters by gender. Size and volume were determined in HDL isolated from plasma by polyethyleneglycol precipitation of apoB-containing lipoproteins and measured using the dynamic light scattering (DLS) technique. Although the gender and age distributions agreed with other studies, the mean HDL size reference value was slightly lower than in some other populations. Both HDL size and volume were influenced by gender and varied according to age. HDL size was associated with age and HDL-C (total population); non- white ethnicity and CETP inversely (females); HDL-C and PLTP mass (males). On the other hand, HDL volume was determined only by HDL-C (total population and in both genders) and by PLTP mass (males). The reference values for mean HDL size and volume using the DLS technique were established in an asymptomatic and representative Brazilian population sample, as well as their related metabolic factors. HDL-C was a major determinant of HDL size and volume, which were differently modulated in females and in males.
Resumo:
The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings.
Resumo:
To evaluate the influence of light-activation of second, third and fourth increments on degree of conversion (DC) and microhardness (KHN) of the top (T) and bottom (B) surface of the first increment. Forty samples (n = 5) were prepared. In groups 1-4, after each increment light-activation (multiple irradiation), T and B of the first increment were measured in DC and KHN. In groups 5-8, only the first increment was made (single irradiation) and measurements of DC and KHN were taken at 15 min intervals. The light-activation modes were (XL) 500 mW/cm(2) × 38 s (G1/G5); (S) 1000 mW/cm(2) × 19 s (G2/G6), (HP) 1400 mW/cm(2) × 14 s (G3/G7); (PE) 3200 mW/cm(2) × 6 s (G4/G8). Data for DC and KHN were analyzed separately by using PROC MIXED for repeated measures and Tukey-Kramer test (α = 0.05). For KHN, B showed lower values than T. PE resulted in lower values of KHN in B surface. For single and multiple irradiations, T and B of first measurement showed the lowest KHN and the fourth measurement showed the highest, with significant difference between them. For single irradiation, first and second increments presented similar KHN, different from the third and fourth increment, which did not differ between them. For multiple irradiations, the second light-activation resulted in KHN similar to first, third and fourth increments. For DC, except QTH, T presented higher DC than B. The light-activation of successive increments was not able to influence the KHN and DC of the first increment.
Resumo:
MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.
Resumo:
The aim of this paper is the description of the strategies and advances in the use of MIP in the development of chemical sensors. MIP has been considered an emerging technology, which allows the synthesis of materials that can mimic some highly specific natural receptors such as antibodies and enzymes. In recent years a great number of publications have demonstrated a growth in their use as sensing phases in the construction of sensors . Thus, the MIP technology became very attractive as a promising analytical tool for the development of sensors.