4 resultados para LDPE Blends

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(hydroxybutyrate) and its copolymers are linear polyesters behaving as conventional thermoplastic materials. However, they are totally biodegradable and produced by a wide variety of bacteria from renewable sources. Some properties and high production cost are still preventing future applications. In an attempt to improve the properties and to reduce cost blending PHB with others polymeric materials is one of the most efficient method. In this paper, miscibility, compatibility, morphological and mechanical aspects of PHB blends will be reviewed. An extensive revision over twenty last years was realized about works of blends based on PHB and its copolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antimony is a common catalyst in the synthesis of polyethylene terephthalate used for food-grade bottles manufacturing. However, antimony residues in final products are transferred to juices, soft drinks or water. The literature reports mentions of toxicity associated to antimony. In this work, a green, fast and direct method to quantify antimony, sulfur, iron and copper, in PET bottles by X-ray fluorescence spectrometry is presented. 2.4 to 11 mg Sb kg-1 were found in 20 samples analyzed. The coupling of the multielemental technique to chemometric treatment provided also the possibility to classify PET samples between bottle-grade PET/recycled PET blends by Fe content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shelled, roasted and salted cashew nut kernels were packaged in three different flexible materials (PP/PE= polypropylene / polyethylene; PETmet/PE= metallized polyethylene terephthalate / polyethylene; PET/Al/LDPE= polyethylene terephthalate / aluminum foil / low density polyethylene ), with different barrier properties. Kernels were stored for one year at 30° C and 80% relative humidity. Quantitative descriptive sensory analysis (QDA) were performed at the end of storage time. Descriptive terms obtained for kernels characterization were brown color, color uniformity and rugosity for appearance; toasted kernel, sweet, old and rancidity for odor; toasted kernel, sweet, old rancidity, salt and bitter for taste, crispness for texture. QDA showed that factors responsible for sensory quality decrease, after one year storage, were increase in old aroma and taste, increase in rancidity aroma and taste, decrease in roasted kernel aroma and taste, and decrease of crispness. Sensory quality decrease was higher in kernels packaged in PP/PE.