4 resultados para Intracerebroventricular

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the effects of acute exercise on the TRB3 protein levels and interaction between TRB3/Akt proteins in the hypothalamus of obese rats. In addition, we evaluated the relationship between TRB3 and endoplasmic reticulum stress (ER stress) and verified whether an acute exercise session is able to influence these processes. In the first part of the study, the rats were divided into three groups: control (lean) - fed with a standard rodent chow, DIO - fed with a high fat diet and DIO submitted to a swimming acute exercise protocol (DIO-EXE). In the second part of the study, we used other three groups: control (lean) receiving an intracerebroventricular (i.c.v.) infusion of vehicle, lean receiving an i.c.v. infusion of thapsigargin, and lean receiving an i.c.v infusion of thapsigargin and performing an acute exercise session. Four hours after the exercise session, the food intake was measured and the hypothalamus was dissected and separated for subsequent protein analysis by immunoblotting and Real Time PCR. The acute exercise session reduced the TRB3 protein levels, disrupted the interaction between TRB3/Akt proteins, increased the phosphorylation of Foxo1 and restored the anorexigenic effects of insulin in the hypothalamus of DIO rats. Interestingly, the suppressive effects of acute exercise on TRB3 protein levels may be related, at least in part, to the decrease of ER stress (evaluated though pancreatic ER kinase phosphorylation - pPERK and C/EBP homologous protein - CHOP protein levels) in the hypothalamus. In conclusion, the reduction of hypothalamic TRB3 protein levels mediated by exercise may be associated with the reduction of ER stress. These data provided a new mechanism by which an acute exercise session improves insulin sensitivity in hypothalamus and restores food intake control in obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In pathological situations, such as acute myocardial infarction, disorders of motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective: Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous system GABAB receptors and also participation of paraventricular nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted rats. Methods: Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group and subdivided. The infarction was performed through ligation of the left anterior descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy was performed by sectioning the dorsal and ventral branches. To verify the action of GABAB receptors, baclofen was injected via icv (intracerebroventricular). Intravenous prazosin was used to produce chemical sympathectomy. The lesion in the PVN of the hypothalamus was performed using a 1mA/10s electrical current and GE was determined by measuring the percentage of gastric retention (% GR) of a saline meal. Results: No significant differences were observed regarding GC between groups; vagotomy significantly reduced % GR in INF group; icv treatment with baclofen significantly reduced %GR. GABAB receptors were not conclusively involved in delaying GE; intravenous treatment with prazosin significantly reduced GR% in INF group. PVN lesion abolished the effect of myocardial infarction on GE. Conclusion: Gastric emptying of liquids induced through acute myocardial infarction in rats showed the involvement of the vagus nerve, alpha1- adrenergic receptors and PVN.Fundamento: Distúrbios da motilidade do intestino proximal no infarto agudo do miocárdio podem desencadear sintomas digestivos como náuseas e vômitos. O infarto do miocárdio ocasiona retardo do esvaziamento gástrico (EG) de líquido em ratos. Objetivo: Investigar se existe a influência do nervo vago (VGX), adrenoreceptores α-1, receptores GABAB do sistema nervoso central e participação do núcleo paraventricular (NPV) do hipotálamo no esvaziamento gástrico (EG) e complacência gástrica (CG) em ratos infartados. Métodos: Ratos Wistar (n = 8-15) foram divididos em: grupo infarto (INF), sham (SH) e subdivididos. O infarto foi realizado por ligadura da artéria coronária descendente anterior. A complacência gástrica foi estimada com curvas pressão-volume. Realizada vagotomia por secção dos ramos dorsal e ventral. Para verificar a ação dos receptores GABAB foi injetado baclofeno por via intra ventrículo-cerebral. Simpatectomia química foi realizada com prazosina intravenosa (iv), e na lesão do núcleo paraventricular do hipotálamo foi utilizada corrente elétrica de 1mA/10s, com esvaziamento gástrico determinado por medição da retenção gástrica (% RG) de uma refeição salina. Resultados: Não houve diferença significativa na CG. A vagotomia (VGX) reduziu significativamente a %RG; no grupo INF, o tratamento intra ventrículo-cerebral (ivc) com baclofeno reduziu significativamente a % RG; não houve conclusivamente envolvimento dos receptores GABAB em retardar o EG; o tratamento intravenoso com prazosina reduziu significativamente a %RG no grupo INF. A lesão do NPV aboliu o efeito do infarto do miocárdio no EG. Conclusão: O nervo vago, receptores α-adrenérgicos e núcleo paraventricular estão envolvidos no retardo do esvaziamento gástrico no infarto agudo do miocárdio em ratos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy is an important process that regulates cellular homeostasis by degrading dysfunctional proteins, organelles and lipids. In this study, the hypothesis that obesity could lead to impairment in hypothalamic autophagy in mice was evaluated by examining the hypothalamic distribution and content of autophagic proteins in animal with obesity induced by 8 or 16 weeks high fat diet to induce obesity and in response to intracerebroventricular injections of palmitic acid. The results showed that chronic exposure to a high fat diet leads to an increased expression of inflammatory markers and downregulation of autophagic proteins. In obese mice, autophagic induction leads to the downregulation of proteins, such as JNK and Bax, which are involved in the stress pathways. In neuron cell- line, palmitate has a direct effect on autophagy even without inflammatory activity. Understanding the cellular and molecular bases of overnutrition is essential for identifying new diagnostic and therapeutic targets for obesity.