8 resultados para Intercellular Junctions

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal pigment epithelium cells, along with tight junction (TJ) proteins, constitute the outer blood retinal barrier (BRB). Contradictory findings suggest a role for the outer BRB in the pathogenesis of diabetic retinopathy (DR). The aim of this study was to investigate whether the mechanisms involved in these alterations are sensitive to nitrosative stress, and if cocoa or epicatechin (EC) protects from this damage under diabetic (DM) milieu conditions. Cells of a human RPE line (ARPE-19) were exposed to high-glucose (HG) conditions for 24 hours in the presence or absence of cocoa powder containing 0.5% or 60.5% polyphenol (low-polyphenol cocoa [LPC] and high-polyphenol cocoa [HPC], respectively). Exposure to HG decreased claudin-1 and occludin TJ expressions and increased extracellular matrix accumulation (ECM), whereas levels of TNF-α and inducible nitric oxide synthase (iNOS) were upregulated, accompanied by increased nitric oxide levels. This nitrosative stress resulted in S-nitrosylation of caveolin-1 (CAV-1), which in turn increased CAV-1 traffic and its interactions with claudin-1 and occludin. This cascade was inhibited by treatment with HPC or EC through δ-opioid receptor (DOR) binding and stimulation, thereby decreasing TNF-α-induced iNOS upregulation and CAV-1 endocytosis. The TJ functions were restored, leading to prevention of paracellular permeability, restoration of resistance of the ARPE-19 monolayer, and decreased ECM accumulation. The detrimental effects on TJs in ARPE-19 cells exposed to DM milieu occur through a CAV-1 S-nitrosylation-dependent endocytosis mechanism. High-polyphenol cocoa or EC exerts protective effects through DOR stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism underlying castration-induced prostate regression, which is a classical physiological concept translated into the therapeutic treatment of advanced prostate cancer, involves epithelial cell apoptosis. In searching for events and mechanisms contributing to prostate regression in response to androgen modulation, we have frequently observed the collective deletion of epithelial cells. This work was undertaken to characterize this phenomenon hereafter named desquamation and to verify its presence after 17β-estradiol (E2) administration. Electron microscopy revealed that the desquamating cells had preserved cell-cell junctions and collapsed nuclear contents. The TUNEL reaction was negative for these cells, which were also negative for cleaved caspases-8, -9, -3 and nuclear apoptosis-inducing factor. Detailed analyses revealed that the condensed chromatin was first affected detaching from the nuclear lamina, which was observable after lamin A immunohistochemistry, suggesting the lack of lamin A degradation. A search in animals treated with supraphysiological E2 employed as an alternative anti-androgen treatment revealed no desquamation. The combined treatment (Cas + E2 group) caused changes particular to each treatment, including desquamation. In conclusion, desquamation appeared as a novel phenomenon contributing to collective prostate epithelial cell deletion, distinct from the classical castration-induced apoptosis and particular to the androgen deprivation resulting from surgical castration, and should be considered as part of the mechanisms promoting organ regression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ICAM-1 expression on the villous syncytiotrophoblast (ST) is believed to participate in migration of maternal cells into the inflamed villi regardless of villitis etiology. However, its expression on immune cells in chronic villitis (CV) has yet to be analyzed. ICAM-1 induces cell-cell adhesion allowing intercellular communication, T cell-mediated defense mechanism, and inflammatory response. 21 cases of CV (all without an identifiable etiologic agent) and 3 control placentas were analyzed using ICAM-1, and for immune cells CD45, CD3 and CD68. These cells were subdivided according to their location in inflamed villi: a) within the inflamed villi and b) outside forming perivillous aggregates. Large amounts of CD45, CD3 and CD68 were found within the inflamed villi and forming perivillous aggregates attached to areas of trophoblastic loss. Inflamed villi usually showed ICAM-1+ ST. The majority of immune cells surrounding areas of trophoblastic rupture presented marked expression of ICAM-1. In contrast, a small number of immune cells within the inflamed villi exhibited ICAM-1 expression. Only some (<5%) inflamed villi without trophoblastic rupture and with ICAM-1+ ST presented adherence of immune cells. In inflamed villi of chronic villitis, the level of ICAM-1 expression on immune cells depends on their location: high in number of cells in the perivillous region and low within the villi. The strongest expression of ICAM-1 on immune cells attached to areas of trophoblastic rupture suggests that the loss of trophoblast can lead to an amplification of the inflammatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sickle cell retinopathy (SCR) develops in up to 30% of sickle cell disease patients (SCD) during the second decade of life. Treatment for this affection remains palliative, so studies on its pathophysiology may contribute to the future development of novel therapies. SCR is more frequently observed in hemoglobin SC disease and derives from vaso-occlusion in the microvasculature of the retina leading to neovascularization and, eventually, to blindness. Circulating inflammatory cytokines, angiogenic factors, and their interaction may contribute to the pathophysiology of this complication. Angiopoietin (Ang)-1, Ang-2, soluble vascular cell adhesion molecule-1, intercellular adhesion molecule (ICAM)-1, E-selectin, P-selectin, IL1-β, TNF-α, pigment epithelium derived factor (PEDF) and vascular endothelial growth factor plasmatic levels were determined in 37 SCD patients with retinopathy, 34 without retinopathy, and healthy controls. We observed that sICAM-1 is significantly decreased, whereas PEDF is elevated in HbSC patients with retinopathy (P=0.012 and P=0.031, respectively). Ang-1, Ang-2 and IL1-β levels were elevated in SCD patients (P=0.001, P<0.001 and P=0.001, respectively), compared to controls, and HbSS patients presented higher levels of Ang-2 compared to HbSC (P<0.001). Our study supports the possible influence of sICAM-1 and PEDF on the pathophysiology of retinal neovascularization in SCD patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vaso-occlusion, responsible for much of the morbidity of sickle-cell disease, is a complex multicellular process, apparently triggered by leukocyte adhesion to the vessel wall. The microcirculation represents a major site of leukocyte-endothelial interactions and vaso-occlusive processes. We have developed a biochip with subdividing interconnecting microchannels that decrease in size (40 μm to 10 μm in width), for use in conjunction with a precise microfluidic device, to mimic cell flow and adhesion through channels of sizes that approach those of the microcirculation. The biochips were utilized to observe the dynamics of the passage of neutrophils and red blood cells, isolated from healthy and sickle-cell anemia (SCA) individuals, through laminin or endothelial adhesion molecule-coated microchannels at physiologically relevant rates of flow and shear stress. Obstruction of E-selectin/intercellular adhesion molecule 1-coated biochip microchannels by SCA neutrophils was significantly greater than that observed for healthy neutrophils, particularly in the microchannels of 40-15 μm in width. Whereas SCA red blood cells alone did not significantly adhere to, or obstruct, microchannels, mixed suspensions of SCA neutrophils and red blood cells significantly adhered to and obstructed laminin-coated channels. Results from this in vitro microfluidic model support a primary role for leukocytes in the initiation of SCA occlusive processes in the microcirculation. This assay represents an easy-to-use and reproducible in vitro technique for understanding molecular mechanisms and cellular interactions occurring in subdividing microchannels of widths approaching those observed in the microvasculature. The assay could hold potential for testing drugs developed to inhibit occlusive mechanisms such as those observed in SCA and thrombotic diseases.