4 resultados para Inflamação. cCTH. Heparina. Invertebrados Aquáticos. Goniopsis Cruentata. Leucócitos
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The input of agrochemicals in the aquatic compartment can results in biochemical injuries for living organisms. In this context, the knowledge of alterations of enzymatic activities due the presence of agriculture pollutants contributes for the elucidation of the mechanisms of toxicity, implementation of economic methods for monitoring purposes and establishment of maximum allowed concentrations. In the present work, the above considerations are discussed, and data concerning changes in enzymatic function by pesticides and fertilizer contaminants are reviewed. Also, we focused on the acid phosphatase due its susceptibility to several pollutants and diversity in cellular functions.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
OBJECTIVE: To screen for mutations in AMH and AMHR2 genes in patients with persistent Müllerian duct syndrome (PMDS). PATIENTS AND METHOD: Genomic DNA of eight patients with PMDS was obtained from peripheral blood leukocytes. Directed sequencing of the coding regions and the exon-intron boundaries of AMH and AMHR2 were performed. RESULTS: The AMH mutations p.Arg95*, p.Arg123Trp, c.556-2A>G, and p.Arg502Leu were identified in five patients; and p.Gly323Ser and p.Arg407* in AMHR2 of two individuals. In silico analyses of the novel c.556-2A>G, p.Arg502Leu and p.Arg407* mutations predicted that they were harmful and were possible causes of the disease. CONCLUSION: A likely molecular etiology was found in the eight evaluated patients with PMDS. Four mutations in AMH and two in AMHR2 were identified. Three of them are novel mutations, c.556-2A>G, and p.Arg502Leu in AMH; and p.Gly323Ser in AMHR2. Arq Bras Endocrinol Metab. 2012;56(8):473-8
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física