3 resultados para ICEBERG LETTUCE

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The covering of the soil is an agricultural practice that intends to control the harmful herbs, to reduce the losses of water by evaporation of the soil, and to facilitate the harvest and the commercialization, once the product is cleaner and healthier. However, when the soil is covered important microclimatic parameters are also altered, and consequently the germination of seeds, the growth of roots, the absorption of water and nutrients, the metabolic activity of the plants and the carbohydrates storage. The current trial intended to evaluate the effect of soil covering with blue colored film on consumptive water-use in a lettuce crop (Lactuca sativa, L.). The experiment was carried out in a plastic greenhouse in Araras - São Paulo State, Brazil from March 3rd, 2001 to May 5th, 2001. The consumptive water-use was measured through two weighing lysimeter installed inside the greenhouse. Crop spacing was 0.25 m x 0.25 m and the color of the film above soil was blue. Leaf area index (IAF), was measured six times (7; 14; 21; 28; 35; 40 days after transplant) and the water-use efficiency (EU) was measured at the end. The experimental design was subdivided portions with two treatments, bare soil and covered soil. The average consumptive water-use was 4.17 mm day-1 to the bare soil treatment and 3.11 mm day-1 to the covered soil treatment. The final leaf area index was 25.23 to the bare soil treatment and 24.39 to the covered soil treatment, and there was no statistical difference between then.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A trial was carried out to evaluate the chemical composition in the aerial part of lettuce, cv. 'Elisa', irrigated with wastewater treated with constructed wetland and source deposit water, grown on a Rhodic Hapludox Soil, using the irrigation systems sprinkle, subsurface drip and surface drip irrigation. The experiment was carried out from August 17th to October 3rd of 2001 and the chemical analyses of the lettuce were accomplished to 47 days after transplanting of the seedling. The aerial part of the lettuce was analyzed as for the levels of total nitrogen, nitrate, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, zinc, sodium, boron, cobalt and molybdenum. The sodium and the sulfur presented higher levels than the maximum suitable in the aerial part of the lettuce and the smallest level of magnesium, while other chemical elements analyzed were normal and appropriate considering the standard for well-nourished plants, not being influenced by the water type. The sodium was the chemical element that presented the highest levels in the aerial part of the lettuce in the treatments irrigated with wastewater, presenting significant difference in relationship to the treatments irrigated with source deposit water in the three irrigation systems. The use of the different irrigation systems by the application of wastewater treated with constructed wetland did not interfere in the levels of nutrients in the aerial part of the lettuce.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was proposed to evaluate the hydroponic lettuce production, variety Vera, on inclined benches with channels of 100 mm, and Nutrient Film Technique, as answer to carbon dioxide application and evaporative cooling. There were five cycles of cultivation from March, 20th to April, 17th (C1); from May, 25th to June, 29th (C2); from July, 13th to August, 20th (C3); from August, 27th to October, 10th (C4); from December, 12th to January, 10th (C5). In three greenhouses were tested the following systems: (A1) without evaporative cooling air CO2 aerial injection, (A2) with CO2 aerial injection and without evaporative cooling and (A3) with CO2 aerial injection and pad-fan evaporative cooling system. The fresh and dry mass of leaves in grams, number of leaves and leaf area in square millimeter were evaluated. The completely randomized statistical analysis was used. The cycle C1 were used 48 replications, for cycles C2, C3 and C5 were used 64 replications and C5 were used 24 replications. The results showed that greenhouse with evaporative cooling system and CO2 allow better development and greater lettuce yield. It was possible to conclude that the aerial injection of CO2, in the absence of evaporative cooling system, did not lead increasing the lettuce productivity to most cycles. Bigger lettuce leaf areas were found in periods with higher temperatures.