7 resultados para Hydrogen storage materials
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Abstract Objective. The aim of this study was to evaluate the alteration of human enamel bleached with high concentrations of hydrogen peroxide associated with different activators. Materials and methods. Fifty enamel/dentin blocks (4 × 4 mm) were obtained from human third molars and randomized divided according to the bleaching procedure (n = 10): G1 = 35% hydrogen peroxide (HP - Whiteness HP Maxx); G2 = HP + Halogen lamp (HL); G3 = HP + 7% sodium bicarbonate (SB); G4 = HP + 20% sodium hydroxide (SH); and G5 = 38% hydrogen peroxide (OXB - Opalescence Xtra Boost). The bleaching treatments were performed in three sessions with a 7-day interval between them. The enamel content, before (baseline) and after bleaching, was determined using an FT-Raman spectrometer and was based on the concentration of phosphate, carbonate, and organic matrix. Statistical analysis was performed using two-way ANOVA for repeated measures and Tukey's test. Results. The results showed no significant differences between time of analysis (p = 0.5175) for most treatments and peak areas analyzed; and among bleaching treatments (p = 0.4184). The comparisons during and after bleaching revealed a significant difference in the HP group for the peak areas of carbonate and organic matrix, and for the organic matrix in OXB and HP+SH groups. Tukey's analysis determined that the difference, peak areas, and the interaction among treatment, time and peak was statistically significant (p < 0.05). Conclusion. The association of activators with hydrogen peroxide was effective in the alteration of enamel, mainly with regards to the organic matrix.
Resumo:
Sensory changes during the storage of coffee beans occur mainly due to lipid oxidation and are responsible for the loss of commercial value. This work aimed to verify how sensory changes of natural coffee and pulped natural coffee are related to the oxidative processes during 15 months of storage. During this period, changes in the content of free fatty acids (1.4-3.8 mg/g oil), TBARS values (8.8-10.2 nmol MDA/g), and carbonyl groups (2.6-3.5 nmol/mg of protein) occurred. The intensity of rested coffee flavour in the coffee brew increased (2.1-6.7) and 5-caffeoylquinic acid concentration decreased (5.2-4.6g/100g). Losses were also observed in seed viability, colour of the beans and cellular structure. All the results of the chemical analyses are coherent with the oxidative process that occurred in the grains during storage. Therefore, oxidation would be also responsible for the loss of cellular structure, seed viability and sensory changes.
Resumo:
This study evaluated the corrosion kinetics and surface topography of Ti-6Al-4V alloy exposed to mouthwash solutions (0.12% chlorhexidine digluconate, 0.053% cetylpyridinium chloride and 3% hydrogen peroxide) compared to artificial saliva (pH6.5) (control). Twenty Ti-6Al-4V alloy disks were used and divided into 4 groups (n=5). For the electrochemical assay, standard tests as open circuit potential and electrochemical impedance spectroscopy (EIS) were applied at baseline, 7 and 14days after immersion in the solutions. Scanning electron microscopy, atomic force microscopy and profilometry (average roughness - Ra) were used for surface characterization. Total weight loss of disks was calculated. Data were analyzed by ANOVA and Bonferroni's test (α=0.05). Hydrogen peroxide generated the lowest polarization resistance (Rp) values for all periods (P<0.05). For the capacitance (Cdl), similar results were observed among groups at baseline (P=0.098). For the 7 and 14-day periods, hydrogen peroxide promoted the highest Cdl values (P<0.0001). Hydrogen peroxide promoted expressive superficial changes and greater Ra values than the others (P<0.0001). It could be concluded that solutions containing cetylpyridinium chloride and chlorhexidine digluconate might be the mouthwashes of choice during the post-operatory period of dental implants. However, hydrogen peroxide is counter-indicated in these situations. Further studies evaluating the dynamics of these solutions (tribocorrosion) and immersing the disks in daily cycles (two or three times a day) to mimic a clinical situation closest to the application of mouthwashes in the oral cavity are warranted to prove our results.
Resumo:
Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.
Resumo:
Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC-DAD-MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p<0.01), with negative estimated values (β coefficients) indicating that during cold storage conditions, the concentrations of these carotenoids tended to decrease. In cv. Nanicão, no carotenoid was significantly affected by cold storage (p>0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p>0.05).
Resumo:
The rice husk and its ash are abundant and renewable and can be used to obtain alternative building materials. An increase in the consumption of such waste could help minimize the environmental problems from their improper disposal. This study aimed to evaluate the use of ashes as a cargo mineral (filler). However, the rice husk chemically interferes in the conduct of the based cement mixtures. Thus, different mixes cement-rice husk with and without the addition of ash were evaluated in order to highlight the influence of its components (husk; ash), which could otherwise be excluded or be underestimated. Cylindrical samples (test of simple compression and traction by diametrical compression) and samples extracted from manufactured pressed board (test of bending and parallel compression to the surface), were used to evaluate the behavior of different mixtures of components (rice hush; RHA - rice husk ahs). The results of the mechanical tests showed, in general, there is not a statistical difference between the mixtures, which are associated with the chemical suppressive effect of the rice husk ash. The mixture of rice husk of 10 mm, with an addition of 35% of the rice husk ash, is notable for allowing the highest consumption of rice husk and rice husk ash, to reduce 25% the consumption of cement and to allow the storage (without emissions to the atmosphere), around 1.9 ton of CO2 per ton of cement consumed, thus contributing to the reduction of CO2 emissions, which can stimulate rural constructions under an ecological point of view.
Resumo:
Shelled, roasted and salted cashew nut kernels were packaged in three different flexible materials (PP/PE= polypropylene / polyethylene; PETmet/PE= metallized polyethylene terephthalate / polyethylene; PET/Al/LDPE= polyethylene terephthalate / aluminum foil / low density polyethylene ), with different barrier properties. Kernels were stored for one year at 30° C and 80% relative humidity. Quantitative descriptive sensory analysis (QDA) were performed at the end of storage time. Descriptive terms obtained for kernels characterization were brown color, color uniformity and rugosity for appearance; toasted kernel, sweet, old and rancidity for odor; toasted kernel, sweet, old rancidity, salt and bitter for taste, crispness for texture. QDA showed that factors responsible for sensory quality decrease, after one year storage, were increase in old aroma and taste, increase in rancidity aroma and taste, decrease in roasted kernel aroma and taste, and decrease of crispness. Sensory quality decrease was higher in kernels packaged in PP/PE.