5 resultados para Hydric stresses

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article discusses the possibility of applying Kuhn's concept of paradigm to collective health. The concept and its use in epidemiology, planning and the social sciences are reviewed briefly. The study stresses the multi-paradigmatic character of collective health, resulting from the convergence of multiple epistemologies and the involvement of diverse fields such as the biological sciences, philosophy, the social sciences and humanities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, to obtain lipids from microalgae has been the object of extensive research, since it is viewed as a promising feedstock for biodiesel production, especially when compared with crops such as soybean and sunflower, in terms of theoretical performance. The reduction of nutrient availability in culture media, especially nitrogen, stresses the microorganisms and affects cell growth, thus inducing lipid accumulation. This is an interesting step in biodiesel feedstock obtention from microalgae and should be better understood. In this study, four levels of nitrogen concentration in the BG-11 culture medium were evaluated in the growth of the chlorophycean microalga Desmodesmus sp. Both cell growth and lipid content were monitored over 7 days of cultivation, which yielded a final cell density of 33 × 10(6) cells mL(-1) with an initial NaNO3 concentration of 750 mg L(-1) in the medium and a maximum lipid content of 23 % with total nitrogen starvation. It was observed that the microalgae presented high lipid accumulation in the fourth day of cultivation with nitrogen starvation, although with moderate cell growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física