5 resultados para Hot-humid climate
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Resumo:
Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments - sedimentary, crystalline, and inselberg -representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically informed conservation strategies in the Caatinga and other SDTF regions that have not previously been prioritized for conservation in order to take into account this heterogeneity.
Resumo:
A floristic survey was carried out in the Grota Funda Municipal Park, Atibaia Municipality, Sao Paulo State (45º45 - 46º 45'W and 23º10 - 23º15'S), a mountainous region from 900 to 1400 meters above sea level. The climate is characterized by two seasons a hot, moist period from October to March and a dry, cold period from April to August, with frequent frosts. The sandy soil is low in fertility and highly acid at the surface. The study was done from April 1987 to November 1988. A total of 415 species were collected and identified: 362 dicotyledons belonging to 84 families and 224 genera, and 53 monocotyledons beloging to 15 families and 43 genera. Species richness in Atibaia can be attributed to environmental diversity, edaphic variation, and slight disturbance of the vegetation. A comparison with other floristic surveys in mountain forests was made and a list of the most common species of this kind of forest is presented.
Resumo:
This study subject to investigate the floristic composition and richness, the reproductive phenological patterns, the dispersal syndromes and life forms of species of a disjunt cerrado in semiarid climate at Araripe plateau during a one year period. We found 107 species and 41 families. Fabaceae, Myrtaceae, Poaceae, Apocynaceae, Euphorbiaceae and Malpighiaceae showed the largest number of species. For 47 of the woody species found, we studied the geographical distribution based on 27 papers of the Brazilian cerrados. Twelve species are of widespread occurence in the cerrado, and 13 are restricted to the Araripe plateau. Zoocory, autocory, and anemocory are the predominant syndromes of dispersal. The predominant life forms were phanerophytes (50.7%), hemicriptophytes (14.9%) and camephytes (13.1%). The cerrado of Araripe have lower species richness than continous cerrados, but a similar pattern of reproductive phenology, dispersal syndromes and life forms in more humid zones.
Resumo:
Seasonal variation in environmental conditions may influence gas exchange rates as well as water relations in perennial species. This work was carried out to evaluate photosynthetic rates (A), transpiration (E), stomatal conductance (g) and leaf water potential (psi f ) in 'Valencia' orange trees grafted on four different rootstocks. Measurements were made twice a day: from 9h00 to 11h00 a.m. and from 1h00 to 3h00 p.m., during January, March and July. A and g were significantly lower and psif was significantly more negative, in the afternoon. The decrease in A may be related to the reduction in g, due to the increase in the vapor pressure deficit between the air and the leaf (VPDair-leaf ) in the afternoon, when temperatures are higher. In spite of the partial stomatal closure in the afternoon, the values for E were approximately the same as those measured in the morning, due to the increase in the VPDair-leaf . A decrease in A and g could also be noted from January to July, that is, from the hot and humid summer months, to the colder and drier winter ones. It was suggested that the decrease in A and g observed from January through March, may be related to the decrease in plant growth rates, which could have influenced the source-sink relationships, since the climatic conditions for both months were similar. The decrease in A and g showed in July, seems to be related to the decrease in both the night temperature and the growth rate of plants.