5 resultados para GINGIVAL INFLAMMATION
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Bone marrow is organized in specialized microenvironments known as 'marrow niches'. These are important for the maintenance of stem cells and their hematopoietic progenitors whose homeostasis also depends on other cell types present in the tissue. Extrinsic factors, such as infection and inflammatory states, may affect this system by causing cytokine dysregulation (imbalance in cytokine production) and changes in cell proliferation and self-renewal rates, and may also induce changes in the metabolism and cell cycle. Known to relate to chronic inflammation, obesity is responsible for systemic changes that are best studied in the cardiovascular system. Little is known regarding the changes in the hematopoietic system induced by the inflammatory state carried by obesity or the cell and molecular mechanisms involved. The understanding of the biological behavior of hematopoietic stem cells under obesity-induced chronic inflammation could help elucidate the pathophysiological mechanisms involved in other inflammatory processes, such as neoplastic diseases and bone marrow failure syndromes.
Resumo:
Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.
Resumo:
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Resumo:
In this study, we aimed to evaluate the effects of exenatide (EXE) treatment on exocrine pancreas of nonhuman primates. To this end, 52 baboons (Papio hamadryas) underwent partial pancreatectomy, followed by continuous infusion of EXE or saline (SAL) for 14 weeks. Histological analysis, immunohistochemistry, Computer Assisted Stereology Toolbox morphometry, and immunofluorescence staining were performed at baseline and after treatment. The EXE treatment did not induce pancreatitis, parenchymal or periductal inflammatory cell accumulation, ductal hyperplasia, or dysplastic lesions/pancreatic intraepithelial neoplasia. At study end, Ki-67-positive (proliferating) acinar cell number did not change, compared with baseline, in either group. Ki-67-positive ductal cells increased after EXE treatment (P = 0.04). However, the change in Ki-67-positive ductal cell number did not differ significantly between the EXE and SAL groups (P = 0.13). M-30-positive (apoptotic) acinar and ductal cell number did not change after SAL or EXE treatment. No changes in ductal density and volume were observed after EXE or SAL. Interestingly, by triple-immunofluorescence staining, we detected c-kit (a marker of cell transdifferentiation) positive ductal cells co-expressing insulin in ducts only in the EXE group at study end, suggesting that EXE may promote the differentiation of ductal cells toward a β-cell phenotype. In conclusion, 14 weeks of EXE treatment did not exert any negative effect on exocrine pancreas, by inducing either pancreatic inflammation or hyperplasia/dysplasia in nonhuman primates.
Resumo:
Obesity is a major risk factor for asthma. Likewise, obesity is known to increase disease severity in asthmatic subjects and also to impair the efficacy of first-line treatment medications for asthma, worsening asthma control in obese patients. This concept is in agreement with the current understanding that some asthma phenotypes are not accompanied by detectable inflammation, and may not be ameliorated by classical anti-inflammatory therapy. There are growing evidences suggesting that the obesity-related asthma phenotype does not necessarily involve the classical T(H)2-dependent inflammatory process. Hormones involved in glucose homeostasis and in the pathogeneses of obesity likely directly or indirectly link obesity and asthma through inflammatory and non-inflammatory pathways. Furthermore, the endocrine regulation of the airway-related pre-ganglionic nerves likely contributes to airway hyperreactivity (AHR) in obese states. In this review, we focused our efforts on understanding the mechanism underlying obesity-related asthma by exploring the T(H)2-independent mechanisms leading to this disease.