8 resultados para FIBROBLAST PROLIFERATION
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.
Resumo:
In oral and oropharyngeal squamous cell carcinoma (OCSCC and OPSCC) exist an association between clinical and histopathological parameters with cell proliferation, basal lamina, connective tissue degradation and surrounding stroma markers. We evaluated these associations in Chilean patients. A convenience sample of 37 cases of OCSCC (n=16) and OPSCC (n=21) was analyzed clinically (TNM, clinical stage) and histologically (WHO grade of differentiation, pattern of tumor invasion). We assessed the expression of p53, Ki67, HOXA1, HOXB7, type IV collagen (ColIV) and carcinoma-associated fibroblast (α-SMA-positive cells). Additionally we conducted a univariate/bivariate analysis to assess the relationship of these variables with survival rates. Males were mostly affected (56.2% OCSCC, 76.2% OPSCC). Patients were mainly diagnosed at III/IV clinical stages (68.8% OCSCC, 90.5% OPSCC) with a predominantly infiltrative pattern invasion (62.9% OCSCC, 57.1% OPSCC). Significant association between regional lymph nodes (N) and clinical stage with OCSCC-HOXB7 expression (Chi-Square test P < 0.05) was observed. In OPSCC a statistically significant association exists between p53, Ki67 with gender (Chi-Square test P < 0.05). In OCSCC and OPSCC was statistically significant association between ki67 with HOXA1, HOXB7, and between these last two antigens (Pearson's Correlation test P < 0.05). Furthermore OPSCC-p53 showed significant correlation when it was compared with α-SMA (Kendall's Tau-c test P < 0.05). Only OCSCC-pattern invasion and OPSCC-primary tumor (T) pattern resulted associated with survival at the end of the follow up period (Chi-Square Likelihood Ratio, P < 0.05). Clinical, histological and immunohistochemical features are similar to seen in other countries. Cancer proliferation markers were associated strongly from each other. Our sample highlights prognostic value of T and pattern of invasion, but the conclusions may be limited and should be considered with caution (small sample). Many cases were diagnosed in the advanced stages of the disease, which suggests that the diagnosis of OCSCC and OPSCC is made late.
Resumo:
To characterize the recently described SCI1 (stigma/style cell cycle inhibitor 1) gene relationship with the auxin pathway, we have taken the advantage of the Arabidopsis model system and its available tools. At first, we have analyzed the At1g79200 T-DNA insertion mutants and constructed various transgenic plants. The loss- and gain-of-function plants displayed cell number alterations in upper pistils that were controlled by the amino-terminal domain of the protein. These data also confirmed that this locus holds the functional homolog (AtSCI1) of the Nicotiana tabacum SCI1 gene. Then, we have provided some evidences the auxin synthesis/signaling pathways are required for downstream proper AtSCI1 control of cell number: (a) its expression is downregulated in yuc2yuc6 and npy1 auxin-deficient mutants, (b) triple (yuc2yuc6sci1) and double (npy1sci1) mutants mimicked the auxin-deficient phenotypes, with no synergistic interactions, and (c) the increased upper pistil phenotype in these last mutants, which is a consequence of an increased cell number, was able to be complemented by AtSCI1 overexpression. Taken together, our data strongly suggests SCI1 as a component of the auxin signaling transduction pathway to control cell proliferation/differentiation in stigma/style, representing a molecular effector of this hormone on pistil development.
Resumo:
To investigate endotoxin levels from primary endodontic infections before and after chemomechanical preparation (CMP) and to determine their antigenicity against 3T3 fibroblasts through gelatinolytic activity of matrix metalloproteinases (MMPs). Twenty-four root canals with primary endodontic infection and apical periodontitis were selected. Samples were collected using paper points before (S1) and after chemomechanical preparation (CMP) (S2). The limulus amebocyte lysate assay was used for endotoxin measurement. Fibroblasts were stimulated with root canal contents for 24 h. Supernatants of cell cultures stimulated with root canal contents were collected after 24 h to determine the levels of MMP-2 and MMP-9 gelatinolytic activity using the zymography technique. Friedman and Wilcoxon tests were used to compare the amount of endotoxin before (S1) and after CMP (S2) (P < 0.05). Data obtained from gelatinolytic activity were analysed using anova and Tukey's tests (P < 0.05). Endotoxin was recovered in 100% of the samples. There was a significant reduction in endotoxin levels after CMP (P < 0.05). A correlation was found between the levels of endotoxins and MMP-2 expression (P < 0.05). Root canal contents of initial samples (S1) induced significantly greater MMP-2 expression by fibroblasts when compared to S2 and the nonstimulated group (P < 0.05). No gelatinolytic activity of MMP-9 was observed in S1, S2 and control group. Root canal contents from primary endodontic infections had gelatinolytic activity for MMP-2. Moreover, CMP was effective in reducing endotoxin levels and their antigenicity against fibroblasts on gelatinolytic activity.
Resumo:
Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch). The p.N540K mutation in the FGFR3 gene occurs in ∼70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control) individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34). One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach) phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.
Resumo:
ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.
Resumo:
As hypoxia-induced inflammatory angiogenesis may contribute to sickle cell disease manifestations, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from steady-state sickle cell anemia patients presented elevated concentrations of pro-angiogenic factors (Angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly augmenting endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice, compared with non-sickle cell disease mice, consistent with an upregulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy displayed a pro-angiogenic profile and had more significant effects on endothelial cell proliferation and capillary formation than plasma of patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factor profile, in association with an inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, sickle cell anemia and retinopathic hemoglobin SC individuals present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy for preventing progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the benefits and drawbacks of the potent anti-angiogenic effects of hydroxyurea should be clarified.
Resumo:
Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.