3 resultados para Ducto hepático

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aflatoxins are hepatotoxic metabolites produced by Aspergillus flavus and A. parasiticus on a number of agricultural commodities. This research was carried out to evaluate the ability of thermolysed and active Saccharomyces cerevisiae to attenuate liver damage caused by aflatoxin. Diets were prepared containing 0 aflatoxin; 400 mug kg-1 aflatoxin; 400 mug kg-1 aflatoxin plus 1% of dehydrated active yeast, and 400 mug kg-1 aflatoxin plus 1% of thermolysed yeast. A bioassay with Wistar rats was conducted for 28 days, and body organs were weighted and analyses of the liver tissue of the animals were performed. The relative weight of heart, kidneys and liver from animals submitted to the different treatments did not show any difference, and liver tissue of animals feeding on the aflatoxin-free diet was adopted as a toxicity-free pattern. Hepatic tissue of animals feeding on diets containing 400 mug kg-1 aflatoxin or the diet supplemented with 1% thermolysed yeast showed clear signs of toxicity and damage. Hepatic tissue of animals feeding on the diet containing 1% of dehydrated active yeast showed less toxicity signs and damage than those receiving the diet containing 400 mug kg-1 aflatoxin. Active, dehydrated yeast had the ability to reduce toxic effects caused by aflatoxin, but thermolysed yeast was not able to alleviate the effects of aflatoxin toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Like in humans, lower amounts of glycogen are present in tissues of diabetic rats. However, training or drugs that lower glycemia can improve the metabolic control. Metformin increased glycogen while decreased glycemia in normal rats stressed by exercise. OBJECTIVE: In this work we investigated if regular exercise and metformin effects improve the metabolism of diabetic rats. METHODS: Alloxan diabetic Wistar rats treated with metformin (DTM) or not (DT) were trained. Training consisted of 20 sessions of 30 min, 5 days a week. Sedentary diabetic rats served as control (SD and SDM). Metformin (5.6 µg/g) was given in the drinking water. After 48 h resting, glucose (mg/dl) and insulin (ng/mL) was measured in plasma and glycogen (mg/100 mg of wet tissue) in liver, soleus and gastrocnemius. RESULTS: Glycemia decreased in DM group from 435±15 to 230±20, in DT group to 143±8.1 and in DTM group to 138±19 mg/dl. DM group had proportional increase in the hepatic glycogen from 1.69±0.22 to 3.53±0.24, and the training increased to 3.36 ± 0.16 mg/100 mg. Metformin induced the same proportional increase in the muscles (soleus from 0.21±0.008 to 0.42±0.03 and gastrocnemius from 0.33±0.02 to 0.46±0.03), while the training promoted increase on gastrocnemius to 0,53 ± 0,03, only. A high interaction was observed in liver (glycogen increased to 6.48±0.34). CONCLUSION: Very small oral doses of metformin and/or, partially restored glycemia in diabetic rats and decreased glycogen in tissues. Its association with an exercise program was beneficial, helping lower glycemia further and increase glycogen stores on liver of diabetic rats.