7 resultados para Direct-to-Consumer genetic testing
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.
Resumo:
• Microsatellite primers were developed for Orthophytum ophiuroides, a rupicolous bromeliad species endemic to neotropical rocky fields. These microsatellite loci will be used to investigate population differentiation and species cohesion in such fragmented environments. The loci were tested for cross-amplification in related bromeliad species. • Eleven polymorphic microsatellite markers were isolated and characterized from an enriched library of O. ophiuroides. The loci were tested on 42 individuals from two populations of this species. The number of alleles per locus ranged from three to nine and the expected and observed heterozygosities ranged from 0.167 to 0.870 and from 0.369 to 0.958, respectively. Seven loci successfully amplified in other related bromeliad species. • Our results suggest that the microsatellite loci developed here will be useful to assess genetic diversity and gene flow in O. ophiuroides for the investigation of population differentiation and species cohesion in neotropical mountainous habitats.
Resumo:
The reproductive capacity between Triatoma lenti and Triatoma sherlocki was observed in order to verify the fertility and viability of the offspring. Cytogenetic, morphological and morphometric approaches were used to analyze the differences that were inherited. Experimental crosses were performed in both directions. The fertility rate of the eggs in crosses involving T. sherlocki females was 65% and 90% in F1 and F2 offspring, respectively. In reciprocal crosses, it was 7% and 25% in F1 and F2 offspring, respectively. The cytogenetic analyses of the male meiotic process of the hybrids were performed using lacto-acetic orcein, C-banding and Feulgen techniques. The male F1 offspring presented normal chromosome behavior, a finding that was similar to those reported in parental species. However, cytogenetic analysis of F2 offspring showed errors in chromosome pairing. This post-zygotic isolation, which prevents hybrids in nature, may represent the collapse of the hybrid. This phenomenon is due to a genetic dysregulation that occurs in the chromosomes of F1. The results were similar in the hybrids from both crosses. Morphological features, such as color and size of connexive and the presence of red-orange rings on the femora, were similar to T. sherlocki, while wins size was similar to T. lenti in F1 offspring. The eggshells showed characteristics that were similar to species of origin, whereas the median process of the pygophore resulted in intermediate characteristics in the F1 and a segregating pattern in F2 offspring. Geometric morphometric techniques used on the wings showed that both F1 and F2 offspring were similar to T. lenti. These studies on the reproductive capacity between T. lenti and T. sherlocki confirm that both species are evolutionarily closed; hence, they are included in the brasiliensis subcomplex. The extremely reduced fertility observed in the F2 hybrids confirmed the specific status of the species that were analyzed.
Resumo:
• Microsatellite primers were designed for Piptadenia gonoacantha (Fabaceae) and characterized to estimate genetic diversity parameters. The species is a native tree from the Atlantic Forest biome commonly used in forest restoration; it has medicinal potential and the wood is economically useful. • Twenty-eight microsatellite loci were identified from an enriched genomic library. Fifteen loci resulted in successful amplifications and were characterized in a natural population of 94 individuals. Twelve loci were polymorphic, with allele numbers ranging from three to 15 per locus, and expected and observed heterozygosities ranging from 0.2142 to 0.8325 and 0.190 to 0.769, respectively. • The developed markers will be used in further studies of population genetics of P. gonoacantha, aimed at conservation and management of the species in natural populations and in forest restoration projects.
Resumo:
The 22q11 chromosomal region contains low copy repeats (LCRs) sequences that mediate non-allelic homologous recombination, which predisposes to copy number variations (CNVs) at this locus. Hemizygous deletions of the proximal 22q11.2 region result in the 22q11.2 deletion syndrome (22q11.2 DS). In addition, 22q11.2 duplications involving the distal LCR22s have been reported. This article describes a patient presenting a 2.5-Mb de novo deletion at proximal 22q11.21 region (between LCRs A-D), combined with a 1.3-Mb maternally inherited duplication at distal 22q11.23 region (between LCRs F-H). The presence of concomitant chromosomal imbalances found in this patient has not been reported previously. Clinical and molecular data were compared with literature, in order to contribute to genotype-phenotype correlation. These findings exemplify the complexity and genetic heterogeneity observed in 22q11.2 deletion syndrome and highlights the difficulty to make genetic counseling and predict phenotypic consequences in these situations.
Resumo:
The main objective of this work is the study of the effect of rice husk addition on the physical and mechanical properties of soil-cement, in order to obtain an alternative construction material. The rice husk preparation consisted of grinding, sieving, and the pre-treatment with lime solution. The physical characteristics of the soil and of the rice husk were determined. Different amounts of soil, cement and rice husk were tested by compaction and unconfined compression. The specimens molded according to the treatments applied to the mixtures were subsequently submitted to compression testing and to tensile splitting cylinder testing at 7 and 28 days of age and to water absorption testing. After determining its physical and mechanical characteristics, the best results were obtained for the soil + 12% (cement + rice husk) mixture. The results showed a promising use as an alternative construction material.
Resumo:
A common breeding strategy is to carry out basic studies to investigate the hypothesis of a single gene controlling the trait (major gene) with or without polygenes of minor effect. In this study we used Bayesian inference to fit genetic additive-dominance models of inheritance to plant breeding experiments with multiple generations. Normal densities with different means, according to the major gene genotype, were considered in a linear model in which the design matrix of the genetic effects had unknown coefficients (which were estimated in individual basis). An actual data set from an inheritance study of partenocarpy in zucchini (Cucurbita pepo L.) was used for illustration. Model fitting included posterior probabilities for all individual genotypes. Analysis agrees with results in the literature but this approach was far more efficient than previous alternatives assuming that design matrix was known for the generations. Partenocarpy in zucchini is controlled by a major gene with important additive effect and partial dominance.