7 resultados para Delaware Water Gap National Recreation Area (N.J. and Pa.)--Maps.

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the influence of radiotherapy on the dentin bond strength of teeth extracted from patients who had undergone head and neck radiotherapy. A total of 36 samples were divided into two experimental groups: group I (control group, n = 18) and group II (in vivo irradiated group, n = 18). Groups I and II were further separated into three subgroups (six specimens per subgroup), which were further assigned to the three adhesive system protocols employed: Single Bond 2 (SB) (3M ESPE), Easy Bond (EB) (3M ESPE) and Clearfil SE Bond (CSE) (Kuraray). The adhesive systems were applied to the prepared surface according to the manufacturers' instructions and restored using composite resin (Filtek Supreme, 3M ESPE). After 24 h in deionised water (37(o)C), teeth were horizontally and vertically cut to obtain beam specimens with a cross-section area of 0.8 ± 1.0 mm(2). Specimens were tested in tension using a universal testing machine at a cross-speed of 0.5 mm/min. Fracture patterns were observed under SEM. Data was analysed by two-way analysis of variance (p ≤ 0.05). No statistically significant difference was found between the irradiated (R/SB = 44.66 ± 10.12 MPa; R/EB = 41.48 ± 12.71 MPa; and R/CSE = 46.01 ± 6.98 MPa) and control group (C/SB = 39.12 ± 9.51 MPa; C/EB = 42.40 ± 6.66 MPa; and C/CSE = 36.58 ± 7.06 MPa) for any of the adhesive systems. All groups presented a predominance of mixed fracture modes. Head and neck radiotherapy did not affect dentin bond strength for the adhesive materials tested in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to treat a water sample contaminated with glyphosate. Biopolymer membranes therefore potentially offer a versatile method to eliminate agricultural chemicals from water supplies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival during dry periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relief influences soil texture variability, since it contributes to the time of exposition of the materials to weathering factors. Our work was carried out in the city of Gavião Peixoto (SP), with the objective of characterizing the spatial variability of texture of a dystrophic Red Latosol cultivated with citrus. The hillside was divided into three segments: top, stocking lean and inferior lean. Soil samples were collected in a grid with regular intervals of 50 m, at the depths of 0.0-0.2 m and 0.6-0.8 m, comprising a total of 332 points in an area of 83.5 ha. The data were submitted to descriptive and geostatistics analyses (semivariogram modeling and kriging maps). The spatial behavior of the texture of oxisols is directly related to the relief forms in this study, which controls the direction of surface and subsurface water flows. The concept of homogeneity of clay distribution in the Oxisol profile is a piece of information that can be adjusted by knowing the spatial pattern of this distribution in different relief forms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the cytotoxic and genotoxic potential of water from the River Paraíba do Sul (Brazil) using Allium cepa roots. An anatomo-morphological parameter (root length), mitotic indices, and frequency of micronuclei were analysed. Eight bulbs were chosen at random for treatment for 24 to 120 hours with the River water collected in the years of 2005 and 2006 from sites in the cities of Tremembé and Aparecida (São Paulo state, Brazil). Daily measurements of the length of the roots grown from each bulb were carried out throughout the experiment. Mitotic index (MI) and frequency of micronuclei (MN) were determined for 2000 cells per root, using 3-5 root tips from other bulbs (7-10). Only in the roots treated with samples of the River water collected in 2005 in Tremembé city was there a decrease in the root length growth compared to the respective control. However, a reduction in MI values was verified for both sites analysed for that year. Considering the data involving root length growth and especially MI values, a cytotoxic potential is suggested for the water of the River Paraíba do Sul at Tremembé and Aparecida, in the year of 2005. On the other hand, since in this year the MN frequency was not affected with the river water treatments, genotoxicity is not assumed for the river water sampled at the aforementioned places.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física