11 resultados para Day-of-the-Week Effect
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Context: Bariatric surgery often results in remission of the diabetic state in obese patients. Increased incretin effect seems to play an important role in the glycemic improvements after Roux-en-Y gastric bypass, but the impact of biliopancreatic diversion (BPD) remains unexplored. Objective: To elucidate the effect of BPD on the incretin effect and its interplay with beta-cell function and insulin sensitivity (IS) in obese subjects with type 2 diabetes (T2DM). Design, Setting and Patients: Twenty-three women were studied: a control group of 13 lean, normal glucose-tolerant women (lean NGT) studied once and 10 obese patients with T2DM studied before, 1 and 12 months after BPD. Intervention: The ObeseT2DM group underwent BPD. Main Outcome Measures: The change in incretin effect as measured by the isoglycemic intravenous glucose infusion test. Secondary outcomes encompassed IS and beta-cell function. Results: At baseline, the incretin effect was lower in obese T2DM compared to lean NGT (p<0.05). One month after BPD, the incretin effect was not changed, but at 12 months it reached the level of the lean NGT group (p>0.05). IS improved (p<0.05) 1 month after BPD and at 12 months it resembled the levels of the lean NGT group. Insulin secretory rate and beta-cell glucose sensitivity increased after BPD and achieved levels similar to lean NGT group 1 month after BPD and even higher levels at 12 months (p<0.05). Conclusions: BPD has no acute impact on the reduced incretin effect, but 12 months after surgery the incretin effect normalizes alongside normalization of glucose control, IS and beta-cell function.
Resumo:
To compare variations in bone mineral density (BMD) and body composition (BC) in depot-medroxyprogesterone acetate (DMPA) users and nonusers after providing counselling on healthy lifestyle habits. An exploratory study in which women aged 18 to 40 years participated: 29 new DMPA users and 25 new non-hormonal contraceptive users. All participants were advised on healthy lifestyle habits: sun exposure, walking and calcium intake. BMD and BC were assessed at baseline and 12 months later. Statistical analysis included the Mann-Whitney test or Student's t-test followed by multiple linear regression analysis. Compared to the controls, DMPA users had lower BMD at vertebrae L1 and L4 after 12 months of use. They also had a mean increase of 2 kg in total fat mass and an increase of 2.2% in body fat compared to the non-hormonal contraceptive users. BMD loss at L1 was less pronounced in DMPA users with a calcium intake ≥ 1 g/day compared to DMPA users with a lower calcium intake. DMPA use was apparently associated with lower BMD and an increase in fat mass at 12 months of use. Calcium intake ≥ 1 g/day attenuates BMD loss in DMPA users. Counselling on healthy lifestyle habits failed to achieve its aims.
Resumo:
Dipyrone (metamizole) is an analgesic pro-drug used to control moderate pain. It is metabolized in two major bioactive metabolites: 4-methylaminoantipyrine (4-MAA) and 4-aminoantipyrine (4-AA). The aim of this study was to investigate the participation of peripheral CB1 and CB2 cannabinoid receptors activation in the anti-hyperalgesic effect of dipyrone, 4-MAA or 4-AA. PGE2 (100ng/50µL/paw) was locally administered in the hindpaw of male Wistar rats, and the mechanical nociceptive threshold was quantified by electronic von Frey test, before and 3h after its injection. Dipyrone, 4-MAA or 4-AA was administered 30min before the von Frey test. The selective CB1 receptor antagonist AM251, CB2 receptor antagonist AM630, cGMP inhibitor ODQ or KATP channel blocker glibenclamide were administered 30min before dipyrone, 4-MAA or 4-AA. The antisense-ODN against CB1 receptor expression was intrathecally administered once a day during four consecutive days. PGE2-induced mechanical hyperalgesia was inhibited by dipyrone, 4-MAA, and 4-AA in a dose-response manner. AM251 or ODN anti-sense against neuronal CB1 receptor, but not AM630, reversed the anti-hyperalgesic effect mediated by 4-AA, but not by dipyrone or 4-MAA. On the other hand, the anti-hyperalgesic effect of dipyrone or 4-MAA was reversed by glibenclamide or ODQ. These results suggest that the activation of neuronal CB1, but not CB2 receptor, in peripheral tissue is involved in the anti-hyperalgesic effect of 4-aminoantipyrine. In addition, 4-methylaminoantipyrine mediates the anti-hyperalgesic effect by cGMP activation and KATP opening.
Resumo:
Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.
Resumo:
The microabrasion technique of enamel consists of selectively abrading the discolored areas or causing superficial structural changes in a selective way. In microabrasion technique, abrasive products associated with acids are used, and the evaluation of enamel roughness after this treatment, as well as surface polishing, is necessary. This in-vitro study evaluated the enamel roughness after microabrasion, followed by different polishing techniques. Roughness analyses were performed before microabrasion (L1), after microabrasion (L2), and after polishing (L3).Thus, 60 bovine incisive teeth divided into two groups were selected (n=30): G1- 37% phosphoric acid (37%) (Dentsply) and pumice; G2- hydrochloric acid (6.6%) associated with silicon carbide (Opalustre - Ultradent). Thereafter, the groups were divided into three sub-groups (n=10), according to the system of polishing: A - Fine and superfine granulation aluminum oxide discs (SofLex 3M); B - Diamond Paste (FGM) associated with felt discs (FGM); C - Silicone tips (Enhance - Dentsply). A PROC MIXED procedure was applied after data exploratory analysis, as well as the Tukey-Kramer test (5%). No statistical differences were found between G1 and G2 groups. L2 differed statistically from L1 and showed superior amounts of roughness. Differences in the amounts of post-polishing roughness for specific groups (1A, 2B, and 1C) arose, which demonstrated less roughness in L3 and differed statistically from L2 in the polishing system. All products increased enamel roughness, and the effectiveness of the polishing systems was dependent upon the abrasive used.
Resumo:
The 'dilution effect' (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity-ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE.
Resumo:
To examine the influence of l-arginine supplementation in combination with physical training on mitochondrial biomarkers from gastrocnemius muscle and its relationship with physical performance. Male Wistar rats were divided into four groups: control sedentary (SD), sedentary supplemented with l-arginine (SDLA), trained (TR) and trained supplemented with l-arginine (TRLA). Supplementation of l-arginine was administered by gavage (62.5mg/ml/day/rat). Physical training consisted of 60min/day, 5days/week, 0% grade, speed of 1.2km/h. The study lasted 8weeks. Skeletal muscle mitochondrial enriched fraction as well as cytoplasmic fractions were obtained for Western blotting and biochemical analyses. Protein expressions of transcriptor coactivator (PGC-1α), transcriptor factors (mtTFA), ATP synthase subunit c, cytochrome oxidase (COXIV), constitutive nitric oxide synthases (eNOS and nNOS), Cu/Zn-superoxide dismutase (SOD) and manganese-SOD (Mn-SOD) were evaluated. We also assessed in plasma: lipid profile, glycemia and malondialdehyde (MDA) levels. The nitrite/nitrate (NOx(-)) levels were measured in both plasma and cytosol fraction of the gastrocnemius muscle. 8-week l-arginine supplementation associated with physical training was effective in promoting greater tolerance to exercise that was accompanied by up-regulation of the protein expressions of mtTFA, PGC-1α, ATP synthase subunit c, COXIV, Cu/Zn-SOD and Mn-SOD. The upstream pathway was associated with improvement of NO bioavailability, but not in NO production since no changes in nNOS or eNOS protein expressions were observed. This combination would be an alternative approach for preventing cardiometabolic diseases given that in overt diseases a profound impairment in the physical performance of the patients is observed.
Resumo:
The aim of this study was to investigate whether β-adrenoceptor (β-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. The present data indicate that β-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of β-AR overactivation on pulmonary circulation.
Resumo:
Type II diabetes mellitus is a highly prevalent disease among the adult Brazilian population, and one that can be controlled by interventions such as physical activity, among others. The aim of this randomized controlled study was to evaluate the impact of a traditional motivational strategy, associated with the activation of intention theory, on adherence to physical activity in patients with type II, diabetes mellitus who are part of the Unified Health System (SUS). Participants were divided into a control group (CG) and an intervention group (IG). In both groups, the traditional motivational strategy was applied, but the activation of intention strategy was only applied to the IG Group. After a two-month follow-up, statistically significant differences were verified between the groups, related to the practice of walking (p = 0.0050), number of days per week (p = 0.0076), minutes per day (p = 0.0050) and minutes walking per week (p = 0.0015). At the end of the intervention, statistically significant differences in abdominal circumference (p = 0.0048) between the groups were observed. The conclusion drawn is that the activation of intention strategy had greater impact on adherence to physical activity and reduction in abdominal circumference in type II diabetics, than traditional motivational strategy.
Resumo:
184
Resumo:
The effects of ionic strength on ions in aqueous solutions are quite relevant, especially for biochemical systems, in which proteins and amino acids are involved. The teaching of this topic and more specifically, the Debye-Hückel limiting law, is central in chemistry undergraduate courses. In this work, we present a description of an experimental procedure based on the color change of aqueous solutions of bromocresol green (BCG), driven by addition of electrolyte. The contribution of charge product (z+|z-|) to the Debye-Hückel limiting law is demonstrated when the effects of NaCl and Na2SO4 on the color of BCG solutions are compared.