7 resultados para Databases on Properties of Inorganic Substances and Materials
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
As propolis is a highly valued bee product, we aimed to verify the quality of aged propolis, investigating their phenolic and flavonoid composition, levels of toxic metals, radical scavenging and antimicrobial activities. Samples of fresh and aged propolis of six different beekeepers, from the same geographical location, were investigated in terms of their phenolic and flavonoid composition and levels of Pb, Cd, and Cr, as well as radical scavenging and antimicrobial activities. The two groups of propolis had similar qualitative composition by HPLC-PDA and ESI(-)-MS. Fresh propolis and aged propolis show no differences when average values of extraction yield, flavonoids, EC50, or MIC were compared and both types of propolis showed good antimicrobial activity at low concentrations. Only levels of phenolic compounds were higher in fresh propolis. The propolis samples considered in this study, aged or fresh, had similar qualitative composition, although they were collected in different periods. Samples only differed in their levels of total phenolic content. Moreover, aged propolis conserves significant radical scavenging and antimicrobial properties. We suggest that aged propolis should not be discarded but explored for alternative applications.
Resumo:
To evaluate the influence of light-activation of second, third and fourth increments on degree of conversion (DC) and microhardness (KHN) of the top (T) and bottom (B) surface of the first increment. Forty samples (n = 5) were prepared. In groups 1-4, after each increment light-activation (multiple irradiation), T and B of the first increment were measured in DC and KHN. In groups 5-8, only the first increment was made (single irradiation) and measurements of DC and KHN were taken at 15 min intervals. The light-activation modes were (XL) 500 mW/cm(2) × 38 s (G1/G5); (S) 1000 mW/cm(2) × 19 s (G2/G6), (HP) 1400 mW/cm(2) × 14 s (G3/G7); (PE) 3200 mW/cm(2) × 6 s (G4/G8). Data for DC and KHN were analyzed separately by using PROC MIXED for repeated measures and Tukey-Kramer test (α = 0.05). For KHN, B showed lower values than T. PE resulted in lower values of KHN in B surface. For single and multiple irradiations, T and B of first measurement showed the lowest KHN and the fourth measurement showed the highest, with significant difference between them. For single irradiation, first and second increments presented similar KHN, different from the third and fourth increment, which did not differ between them. For multiple irradiations, the second light-activation resulted in KHN similar to first, third and fourth increments. For DC, except QTH, T presented higher DC than B. The light-activation of successive increments was not able to influence the KHN and DC of the first increment.
Resumo:
Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing and it must not jeopardize the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical, chemical, and biological characteristics of dense and porous silk fibroin membranes. Silk fibroin membranes were treated by several procedures: immersion in 70% ethanol solution, ultraviolet radiation, autoclave, ethylene oxide, and gamma radiation, and were analyzed by scanning electron microscopy, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, tensile strength and in vitro cytotoxicity to Chinese hamster ovary cells. The results indicated that the sterilization methods did not cause perceivable morphological changes in the membranes and the membranes were not toxic to cells. The sterilization methods that used organic solvent or an increased humidity and/or temperature (70% ethanol, autoclave, and ethylene oxide) increased the silk II content in the membranes: the dense membranes became more brittle, while the porous membranes showed increased strength at break. Membranes that underwent sterilization by UV and gamma radiation presented properties similar to the nonsterilized membranes, mainly for tensile strength and FTIR results.
Resumo:
Viscosupplements, used for treating joint and cartilage diseases, restore the rheological properties of synovial fluid, regulate joint homeostasis and act as scaffolds for cell growth and tissue regeneration. Most viscosupplements are hydrogels composed of hyaluronic acid (HA) microparticles suspended in fluid HA. These microparticles are crosslinked with chemicals to assure their stability against enzyme degradation and to prolong the action of the viscosupplement. However, the crosslinking also modifies the mechanical, swelling and rheological properties of the HA microparticle hydrogels, with consequences on the effectiveness of the application. The aim of this study is to correlate the crosslinking degree (CD) with these properties to achieve modulation of HA/DVS microparticles through CD control. Because divinyl sulfone (DVS) is the usual crosslinker of HA in viscosupplements, we examined the effects of CD by preparing HA microparticles at 1:1, 2:1, 3:1, and 5:1 HA/DVS mass ratios. The CD was calculated from inductively coupled plasma spectrometry data. HA microparticles were previously sized to a mean diameter of 87.5 µm. Higher CD increased the viscoelasticity and the extrusion force and reduced the swelling of the HA microparticle hydrogels, which also showed Newtonian pseudoplastic behavior and were classified as covalent weak. The hydrogels were not cytotoxic to fibroblasts according to an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014.
Resumo:
Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.
Resumo:
This study was aimed at spray drying hydrolysed casein using gum Arabic as the carrier agent, in order to decrease the bitter taste. Three formulations with differing proportions of hydrolysed casein: gum Arabic (10:90, 20:80 and 30:70) were prepared and characterized. They were evaluated for their moisture content, water activity, hygroscopicity, dispersibility in water and in oil, particle size and distribution, particle morphology, thermal behaviour (DSC) and bitter taste by a trained sensory panel using a paired-comparison test (free samples vs. spray dried samples). The proportion of hydrolysed casein did not affect the morphology of the microspheres. The spray drying process increased product stability and modified the dissolution time, but had no effect on the ability of the material to dissolve in either water or oil. The sensory tests showed that the spray drying process using gum Arabic as the carrier was efficient in attenuating or masking the bitter taste of the hydrolysed casein.
Resumo:
To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.