4 resultados para DRUG RESISTANCE
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Left ventricular hypertrophy and diastolic dysfunction (LVDD) remain highly frequent markers of cardiac damage and risk of progression to symptomatic heart failure, especially in resistant hypertension (RHTN). We have previously demonstrated that administration of sildenafil in hypertensive rats improves LVDD, restoring phosphodiesterase type 5 (PDE-5) inhibition in cardiac myocytes. We hypothesized that the long-acting PDE-5 inhibitor tadalafil may be clinically useful in improving LVDD in RHTN independently of blood pressure (BP) reduction. A single blinded, placebo-controlled, crossover study enrolled 19 patients with both RHTN and LVDD. Firstly, subjects received tadalafil (20 mg) for 14 days and after a 2-week washout period, they received placebo orally for 14 days. Patients were evaluated by office BP and ambulatory BP monitoring (ABPM), endothelial function (FMD), echocardiography, plasma brain natriuretic peptide (BNP-32), cyclic guanosine monophosphate (cGMP) and nitrite levels. No significant differences were detected in BP measurements. Remarkably, at least four echocardiographic parameters related with diastolic function improved accompanied by decrease in BNP-32 in tadalafil use. Although increasing cGMP, tadalafil did not change endothelial function or nitrites. There were no changes in those parameters after placebo. The current findings suggest that tadalafil improves LV relaxation through direct effects PDE-5-mediated in the cardiomyocytes with potential benefit as an adjunct to treat symptomatic subjects with LVDD such as RHTN patients.
Resumo:
Resistant hypertension (RHTN) includes patients with controlled blood pressure (BP) (CRHTN) and uncontrolled BP (UCRHTN). In fact, RHTN patients are more likely to have target organ damage (TOD), and resistin, leptin and adiponectin may affect BP control in these subjects. We assessed the relationship between adipokines levels and arterial stiffness, left ventricular hypertrophy (LVH) and microalbuminuria (MA). This cross-sectional study included CRHTN (n=51) and UCRHTN (n=38) patients for evaluating body mass index, ambulatory blood pressure monitoring, plasma adiponectin, leptin and resistin concentrations, pulse wave velocity (PWV), MA and echocardiography. Leptin and resistin levels were higher in UCRHTN, whereas adiponectin levels were lower in this same subgroup. Similarly, arterial stiffness, LVH and MA were higher in UCRHTN subgroup. Adiponectin levels negatively correlated with PWV (r=-0.42, P<0.01), and MA (r=-0.48, P<0.01) only in UCRHTN. Leptin was positively correlated with PWV (r=0.37, P=0.02) in UCRHTN subgroup, whereas resistin was not correlated with TOD in both subgroups. Adiponectin is associated with arterial stiffness and renal injury in UCRHTN patients, whereas leptin is associated with arterial stiffness in the same subgroup. Taken together, our results showed that those adipokines may contribute to vascular and renal damage in UCRHTN patients.
Resumo:
Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2μM). Nek5 silenced cells as well as cells expressing a kinase dead version of Nek5, displayed an increase in ROS formation after 4h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells.
Resumo:
Multidrug resistance, MDR is a major obstacle for cancer chemotherapy. MDR can be reversed by drugs that vary in their chemical structure and main biological activity. Many efforts have been done to overcome MDR based on studies of structure-activity relationships and in this review we summarize some aspects of MDR mediated by P-glycoprotein (P-gp), as the most experimentally and clinically tested form of drug resistance. The most significant MDR mechanisms revealed until now are shortly discussed. Physicochemical and structural properties of MDR modulators, measures of the MDR reversal, and QSAR studies are included.