30 resultados para DEFICIENT CELLS
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.
Resumo:
Characterized for the first time in erythrocytes, phosphatidylinositol phosphate kinases (PIP kinases) belong to a family of enzymes that generate various lipid messengers and participate in several cellular processes, including gene expression regulation. Recently, the PIPKIIα gene was found to be differentially expressed in reticulocytes from two siblings with hemoglobin H disease, suggesting a possible relationship between PIPKIIα and the production of globins. Here, we investigated PIPKIIα gene and protein expression and protein localization in hematopoietic-derived cells during their differentiation, and the effects of PIPKIIα silencing on K562 cells. PIPKIIα silencing resulted in an increase in α and γ globins and a decrease in the proliferation of K562 cells without affecting cell cycle progression and apoptosis. In conclusion, using a cell line model, we showed that PIPKIIα is widely expressed in hematopoietic-derived cells, is localized in their cytoplasm and nucleus, and is upregulated during erythroid differentiation. We also showed that PIPKIIα silencing can induce α and γ globin expression and decrease cell proliferation in K562 cells.
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
This study aimed at evaluating the functional activation and activating receptors expression on resting, short- and long-term NK and NK-like T cells from blood of ovarian neoplasia patients. Blood from patients with adnexal benign alterations (n = 10) and ovarian cancer (grade I-IV n = 14) were collected after signed consent. Effector cells activation was evaluated by the expression of the CD107a molecule. Short-term culture was conducted overnight with IL-2 and long-term culture for 21 days, by a method designed to expand CD56(+) lymphocytes. Short-term culture significantly increased NK cells activation compared to resting NK cells (p<0.05), however, the long-term procedure supported an even higher increase (p<0.001). Resting NK-like T cells showed poor activation, which was not altered by the culture procedures. The long-term culture effectively increased the expression of the activating receptors on NK and NK-like T cells, either by increasing the number of cells expressing a given receptor and/or by up-regulating their expression intensity. As a conclusion, the long-term culture system employed, resulted in a high number of functional NK cells. The culture system was particularly efficient on the up-regulation of NKp30 and DNAM-1 receptors on NK cells.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that occur naturally in complex mixtures. Many of the adverse health effects of PAHs including cancer are linked to the activation of intracellular stress response signaling. This study has investigated intracellular MAPK signaling in response to PAHs in extracts from urban air collected in Stockholm, Sweden and Limeira, Brazil, in comparison to BP in HepG2 cells. Nanomolar concentrations of PAHs in the extracts induced activation of MEK4 signaling with down-stream increased gene expression of several important stress response mediators. Involvement of the MEK4/JNK pathway was confirmed using siRNA and an inhibitor of JNK signaling resulting in significantly reduced MAPK signaling transactivated by the AP-1 transcription factors ATF2 and c-Jun. ATF2 was also identified as a sensitive stress responsive protein with activation observed at extract concentrations equivalent to 0.1 nM BP. We show that exposure to low levels of environmental PAH mixtures more strongly activates these signaling pathways compared to BP alone suggesting effects due to interactions. Taken together, this is the first study showing the involvement of MEK4/JNK/AP-1 pathway in regulating the intracellular stress response after exposure to nanomolar levels of PAHs in environmental mixtures.
Resumo:
Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.
Resumo:
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) functions both in regulation of insulin secretion and neurotransmitter release through common downstream mediators. Therefore, we hypothesized that pancreatic ß-cells acquire and store the information contained in calcium pulses as a form of metabolic memory, just as neurons store cognitive information. To test this hypothesis, we developed a novel paradigm of pulsed exposure of ß-cells to intervals of high glucose, followed by a 24-h consolidation period to eliminate any acute metabolic effects. Strikingly, ß-cells exposed to this high-glucose pulse paradigm exhibited significantly stronger insulin secretion. This metabolic memory was entirely dependent on CaMKII. Metabolic memory was reflected on the protein level by increased expression of proteins involved in glucose sensing and Ca(2+)-dependent vesicle secretion, and by elevated levels of the key ß-cell transcription factor MAFA. In summary, like neurons, human and mouse ß-cells are able to acquire and retrieve information.
Resumo:
The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition.
Resumo:
Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).
Resumo:
To determine if magnesium deficiency aggravates the effects of a high-fat diet in growing rats in terms of obesity, lipid profile and insulin resistance. The study population comprised 48 newly weaned male Wistar Hannover rats distributed into four groups according to diet, namely, control group (CT; n = 8), control diet provided ad libitum; pair-feeding control group (PF; n = 16), control diet but in the same controlled amount as animals that received high-fat diets; high-fat diet group (HF; n = 12), and magnesium-deficient high-fat diet group (HFMg(-); n = 12). The parameters investigated were adiposity index, lipid profile, magnesium status, insulin sensitivity and the phosphorylation of proteins involved in the insulin-signaling pathway, i.e. insulin receptor β-subunit, insulin receptor substrate 1 and protein kinase B. The HF and HFMg(-) groups were similar regarding gain in body mass, adiposity index and lipid profile, but were significantly different from the PF group. The HFMg(-) group exhibited alterations in magnesium homeostasis as revealed by the reduction in urinary and bone concentrations of the mineral. No inter-group differences were observed regarding glucose homeostasis. Protein phosphorylation in the insulin-signaling pathway was significantly reduced in the high-fat groups compared with the control groups, demonstrating that the intake of fat-rich diets increased insulin resistance, a syndrome that was aggravated by magnesium deficiency. Under the experimental conditions tested, the intake of a magnesium-deficient high-fat diet led to alterations in the insulin-signaling pathway and, consequently, increased insulin resistance.
Resumo:
Pilomatrixoma, craniopharyngioma, and calcifying cystic odontogenic tumor are the main entities presenting ghost cells as an important histological feature, in spite their quite different clinical presentation; it seems that they share a common pathway in the formation of these cells. The aim of this study is to examine and compare the characteristics of ghost and other cells that form these lesions. Forty-three cases including 21 pilomatrixomas, 14 craniopharyngiomas, and eight calcifying cystic odontogenic tumors were evaluated by immunohistochemistry for cytokeratins, CD138, β-catenin, D2-40, Glut-1, FAS, CD10 and also by scanning electron microscopy. The CKs, CD138, β-catenin, Glut-1, FAS, and CD10 were more often expressed by transitional cells of craniopharyngioma and calcifying cystic odontogenic tumor, compared with pilomatrixoma. Basaloid cells of pilomatrixoma showed strong positivity for CD138 and CD10. Differences on expression pattern were identified in transitional and basal cells, as ghost cells were negative for most antibodies used, except by low expression for cytokeratins. By scanning electron microscopy, the morphology of ghost cells were similar in their fibrillar cytoplasm, but their pattern varied from sheets in pilomatrixoma to small clusters in craniopharyngioma and calcifying cystic odontogenic tumor. Mechanisms involved in formation of ghost cells are unknown, but probably they follow different pathways as protein expression in the basal/transitional cells was not uniform in the three tumors studied.
Resumo:
In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms.
Resumo:
Retinal pigment epithelium cells, along with tight junction (TJ) proteins, constitute the outer blood retinal barrier (BRB). Contradictory findings suggest a role for the outer BRB in the pathogenesis of diabetic retinopathy (DR). The aim of this study was to investigate whether the mechanisms involved in these alterations are sensitive to nitrosative stress, and if cocoa or epicatechin (EC) protects from this damage under diabetic (DM) milieu conditions. Cells of a human RPE line (ARPE-19) were exposed to high-glucose (HG) conditions for 24 hours in the presence or absence of cocoa powder containing 0.5% or 60.5% polyphenol (low-polyphenol cocoa [LPC] and high-polyphenol cocoa [HPC], respectively). Exposure to HG decreased claudin-1 and occludin TJ expressions and increased extracellular matrix accumulation (ECM), whereas levels of TNF-α and inducible nitric oxide synthase (iNOS) were upregulated, accompanied by increased nitric oxide levels. This nitrosative stress resulted in S-nitrosylation of caveolin-1 (CAV-1), which in turn increased CAV-1 traffic and its interactions with claudin-1 and occludin. This cascade was inhibited by treatment with HPC or EC through δ-opioid receptor (DOR) binding and stimulation, thereby decreasing TNF-α-induced iNOS upregulation and CAV-1 endocytosis. The TJ functions were restored, leading to prevention of paracellular permeability, restoration of resistance of the ARPE-19 monolayer, and decreased ECM accumulation. The detrimental effects on TJs in ARPE-19 cells exposed to DM milieu occur through a CAV-1 S-nitrosylation-dependent endocytosis mechanism. High-polyphenol cocoa or EC exerts protective effects through DOR stimulation.
Resumo:
261
Resumo:
Fibroblast cells grown in electrospun polymer scaffolds were stained with platinum blue, a heavy metal stain, and imaged using scanning electron microscopy. Good contrast on the cells was achieved compared with samples that were gold sputter coated. The cell morphology could be clearly observed, and the cells could be distinguished from the scaffold fibers. Here we optimized the required concentration of platinum blue for imaging cells grown in scaffolds and show that a higher concentration causes platinum aggregation. Overall, platinum blue is a useful stain for imaging cells because of its enhanced contrast using scanning electron microscopy (SEM). In the future it would be useful to investigate cell growth and morphology using three-dimensional imaging methods.