2 resultados para Cultivo de plantas medicinais
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Cecropia glaziovii is a tree with used in Brazilian popular medicine. Methods allowing the clonal propagation of this species are of great interest for superior genotype multiplication and perpetuation. For this reason, we examined the effect of different culture media and different types of explants on adventitious shoot regeneration from callus and buds of C. glaziovii. Leaves, petioles and stipules obtained from aseptically grown seedlings or from pre-sterilized plants were used to initiate cultures. Adventitious shoot regeneration was achieved when apical and axillary buds were inoculated on gelled Murashige & Skoog (MS) medium supplemented with 6-benzylaminopurine alone (BAP) (1.0, 5.0 or 10.0 mg L-1) or combined with -naphthalene acetic acid (NAA) (1.0 or 2.0 mg L-1), after 40 days of culture. Best callus production was obtained after 30 days of petioles' culture on gelled MS medium with 2,4 dichlorophenoxyacetic acid (2,4-D) (5.0 mg L-1) combined with BAP (1.0 mg L-1). Successful shoot regeneration from callus was achieved when MS medium supplemented with zeatin (ZEA) (0.1 mg L-1) alone or combined with 2,4-D (1.0 or 5.0 mg L-1) was inoculated with friable callus obtained from petioles. All shoots were rooted by inoculation on MS medium supplemented with indole-3-acetic acid (IAA) (1.0 mg L-1). Rooted plants transferred to potting soil were successfully established. All in vitro regenerated plantlets showed to be normal, without morphological variations, being also identical to the source plant. Our study has shown that C. glaziovii can be propagated by tissue culture methods, allowing large scale multiplication of superior plants for pharmacological purposes.
Resumo:
It was proposed to evaluate the hydroponic lettuce production, variety Vera, on inclined benches with channels of 100 mm, and Nutrient Film Technique, as answer to carbon dioxide application and evaporative cooling. There were five cycles of cultivation from March, 20th to April, 17th (C1); from May, 25th to June, 29th (C2); from July, 13th to August, 20th (C3); from August, 27th to October, 10th (C4); from December, 12th to January, 10th (C5). In three greenhouses were tested the following systems: (A1) without evaporative cooling air CO2 aerial injection, (A2) with CO2 aerial injection and without evaporative cooling and (A3) with CO2 aerial injection and pad-fan evaporative cooling system. The fresh and dry mass of leaves in grams, number of leaves and leaf area in square millimeter were evaluated. The completely randomized statistical analysis was used. The cycle C1 were used 48 replications, for cycles C2, C3 and C5 were used 64 replications and C5 were used 24 replications. The results showed that greenhouse with evaporative cooling system and CO2 allow better development and greater lettuce yield. It was possible to conclude that the aerial injection of CO2, in the absence of evaporative cooling system, did not lead increasing the lettuce productivity to most cycles. Bigger lettuce leaf areas were found in periods with higher temperatures.