10 resultados para Counting circuits.
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Resumo:
We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and g ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion.
Resumo:
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction.
Resumo:
A 46-year-old woman complained of blurred and distorted vision in both eyes. Ophthalmic examination showed that visual acuity was 20/200 for the right eye and counting fingers left eye. Fundoscopy revealed perimacular hemorrhages, aneurismal dilatation of the vessels in the posterior pole, and a white and elevated lesion adjacent to vascular changes. We report a case of idiopathic macular telangiectasia and epiretinal membrane that occurs concomitantly. To our knowledge, this is the first report that describes an association between idiopathic macular telangiectasia and epiretinal membrane formation.
Resumo:
The present study investigated the effectiveness of mesenchymal stem cells (MSCs) associated with a fibrin scaffold (FS) for the peripheral regenerative process after nerve tubulization. Adult female Lewis rats received a unilateral sciatic nerve transection followed by repair with a polycaprolactone (PCL)-based tubular prosthesis. Sixty days after injury, the regenerated nerves were studied by immunohistochemistry. Anti-p75NTR immunostaining was used to investigate the reactivity of the MSCs. Basal labeling, which was upregulated during the regenerative process, was detected in uninjured nerves and was significantly greater in the MSC-treated group. The presence of GFP-positive MSCs was detected in the nerves, indicating the long term survival of such cells. Moreover, there was co-localization between MSCs and BNDF immunoreactivity, showing a possible mechanism by which MSCs improve the reactivity of SCs. Myelinated axon counting and morphometric analyses showed that MSC engrafting led to a higher degree of fiber compaction combined with a trend of increased myelin sheath thickness, when compared with other groups. The functional result of MSC engrafting was that the animals showed higher motor function recovery at the seventh and eighth week after lesion. The findings herein show that MSC+FS therapy improves the nerve regeneration process by positively modulating the reactivity of SCs.
Resumo:
We tested the hypothesis that chronic pain development (pain chronification) and ongoing chronic pain (chronic pain) reduce the activity and induce plastic changes in an endogenous analgesia circuit, the ascending nociceptive control. An important mechanism mediating this form of endogenous analgesia, referred to as capsaicin-induced analgesia, is its dependence on nucleus accumbens μ-opioid receptor mechanisms. Therefore, we also investigated whether pain chronification and chronic pain alter the requirement for nucleus accumbens μ-opioid receptor mechanisms in capsaicin-induced analgesia. We used an animal model of pain chronification in which daily subcutaneous prostaglandin E2 (PGE2) injections into the rat's hind paw for 14 days, referred to as the induction period of persistent hyperalgesia, induce a long-lasting state of nociceptor sensitization referred to as the maintenance period of persistent hyperalgesia, that lasts for at least 30 days following the cessation of the PGE2 treatment. The nociceptor hypersensitivity was measured by the shortening of the time interval for the animal to respond to a mechanical stimulation of the hind paw. We found a significant reduction in the duration of capsaicin-induced analgesia during the induction and maintenance period of persistent mechanical hyperalgesia. Intra-accumbens injection of the μ-opioid receptor selective antagonist Cys(2),Tyr(3),Orn(5),Pen(7)amide (CTOP) 10 min before the subcutaneous injection of capsaicin into the rat's fore paw blocked capsaicin-induced analgesia. Taken together, these findings indicate that pain chronification and chronic pain reduce the duration of capsaicin-induced analgesia, without affecting its dependence on nucleus accumbens μ-opioid receptor mechanisms. The attenuation of endogenous analgesia during pain chronification and chronic pain suggests that endogenous pain circuits play an important role in the development and maintenance of chronic pain.
Resumo:
Behavioral adaptiveness to different situations as well as behavioral individuality result from the interrelations between environmental sitmuli and the responses of an organism.These kind of interrelationships also shape the neural circuits as well as characterize the plasticity and the neural individuality of the organism. Studies on neural plasticity may analyze changes in neural circuitry after environmental manipulations or changes in behavior after lesions in the nervous system. Issues on neural plasticity and recovery of function refer both to physiology and behavior as well as to the subjacent mechanisms related to morphology, biochemistry and genetics. They may be approached at the systemic, behavioral, cellular and molecular levels. This work intends to characterize these kinds of studies pointing to their relations with the analyis of behavior and learning.The analysis of how the environmental-organismic interrelationships affect the neural substrates of behavior is pointed as a very stimulating area for investigation.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física