3 resultados para Cortés, Hernán, 1485-1547.
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Pilomatrixoma, craniopharyngioma, and calcifying cystic odontogenic tumor are the main entities presenting ghost cells as an important histological feature, in spite their quite different clinical presentation; it seems that they share a common pathway in the formation of these cells. The aim of this study is to examine and compare the characteristics of ghost and other cells that form these lesions. Forty-three cases including 21 pilomatrixomas, 14 craniopharyngiomas, and eight calcifying cystic odontogenic tumors were evaluated by immunohistochemistry for cytokeratins, CD138, β-catenin, D2-40, Glut-1, FAS, CD10 and also by scanning electron microscopy. The CKs, CD138, β-catenin, Glut-1, FAS, and CD10 were more often expressed by transitional cells of craniopharyngioma and calcifying cystic odontogenic tumor, compared with pilomatrixoma. Basaloid cells of pilomatrixoma showed strong positivity for CD138 and CD10. Differences on expression pattern were identified in transitional and basal cells, as ghost cells were negative for most antibodies used, except by low expression for cytokeratins. By scanning electron microscopy, the morphology of ghost cells were similar in their fibrillar cytoplasm, but their pattern varied from sheets in pilomatrixoma to small clusters in craniopharyngioma and calcifying cystic odontogenic tumor. Mechanisms involved in formation of ghost cells are unknown, but probably they follow different pathways as protein expression in the basal/transitional cells was not uniform in the three tumors studied.
Resumo:
1-2
Resumo:
G-quadruplexes are secondary structures present in DNA and RNA molecules, which are formed by stacking of G-quartets (i.e., interaction of four guanines (G-tracts) bounded by Hoogsteen hydrogen bonding). Human PAX9 intron 1 has a putative G-quadruplex-forming region located near exon 1, which is present in all known sequenced placental mammals. Using circular dichroism (CD) analysis and CD melting, we showed that these sequences are able to form highly stable quadruplex structures. Due to the proximity of the quadruplex structure to exon-intron boundary, we used a validated double-reporter splicing assay and qPCR to analyze its role on splicing efficiency. The human quadruplex was shown to have a key role on splicing efficiency of PAX9 intron 1, as a mutation that abolished quadruplex formation decreased dramatically the splicing efficiency of human PAX9 intron 1. The less stable, rat quadruplex had a less efficient splicing when compared to human sequences. Additionally, the treatment with 360A, a strong ligand that stabilizes quadruplex structures, further increased splicing efficiency of human PAX9 intron 1. Altogether, these results provide evidences that G-quadruplex structures are involved in splicing efficiency of PAX9 intron 1.