2 resultados para Computer Modelling, Interstitial Fluid Flow, Transport Mechanism, Functional Adaptation

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This clinical study assessed the influence of different intracanal medications on Th1-type and Th2-type cytokine responses in apical periodontitis and monitored the levels of bacteria from primarily infection during endodontic procedures. Thirty primarily infected teeth were randomly divided into 3 groups according to the medication selected: chlorhexidine (CHX), 2% CHX gel; Ca(OH)2/SSL, Ca(OH)2 + SSL; and Ca(OH)2/CHX, Ca(OH)2 + 2% CHX gel (all, n = 10). Bacterial sample was collected from root canals, and the interstitial fluid was sampled from lesions. Culture techniques were used to determine bacterial counts (colony-forming units/mL). Th1 (tumor necrosis factor-α, interferon-γ, and interleukin [IL]-2) and Th2 cytokines (IL-4, IL-5, and IL-13) were measured by enzyme-linked immunosorbent assay. All intracanal medication protocols were effective in reducing the bacterial load from root canals (all P < .05) and lowering the levels of Th1-type cytokines in apical lesions (all P < .05), with no differences between them (P > .05). Both Ca(OH)2 treatment protocols significantly increased the levels of Th2-type cytokines (P < .05), with no differences between them (P > .05). Thus, chlorhexidine medication showed the lowest effectiveness in increasing the levels of Th2-type cytokine. After treatment, regardless of the type of medication, the linear regression analysis indicated the down-regulation of Th2-type cytokines by Th1-type cytokines. All intracanal medication protocols were effective in reducing bacterial load and lowering the levels of Th1-type cytokines. Thus, the use of Ca(OH)2 medications contributed to the increase in the Th2-type cytokine response in apical periodontitis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.