4 resultados para Cellules de Schwann périsynaptiques

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the effectiveness of mesenchymal stem cells (MSCs) associated with a fibrin scaffold (FS) for the peripheral regenerative process after nerve tubulization. Adult female Lewis rats received a unilateral sciatic nerve transection followed by repair with a polycaprolactone (PCL)-based tubular prosthesis. Sixty days after injury, the regenerated nerves were studied by immunohistochemistry. Anti-p75NTR immunostaining was used to investigate the reactivity of the MSCs. Basal labeling, which was upregulated during the regenerative process, was detected in uninjured nerves and was significantly greater in the MSC-treated group. The presence of GFP-positive MSCs was detected in the nerves, indicating the long term survival of such cells. Moreover, there was co-localization between MSCs and BNDF immunoreactivity, showing a possible mechanism by which MSCs improve the reactivity of SCs. Myelinated axon counting and morphometric analyses showed that MSC engrafting led to a higher degree of fiber compaction combined with a trend of increased myelin sheath thickness, when compared with other groups. The functional result of MSC engrafting was that the animals showed higher motor function recovery at the seventh and eighth week after lesion. The findings herein show that MSC+FS therapy improves the nerve regeneration process by positively modulating the reactivity of SCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligodendrocytes and Schwann cells are engaged in myelin production, maintenance and repairing respectively in the central nervous system (CNS) and the peripheral nervous system (PNS). Whereas oligodendrocytes act only within the CNS, Schwann cells are able to invade the CNS in order to make new myelin sheaths around demyelinated axons. Both cells have some limitations in their activities, i.e. oligodendrocytes are post-mitotic cells and Schwann cells only get into the CNS in the absence of astrocytes. Ethidium bromide (EB) is a gliotoxic chemical that when injected locally within the CNS, induce demyelination. In the EB model of demyelination, glial cells are destroyed early after intoxication and Schwann cells are free to approach the naked central axons. In normal Wistar rats, regeneration of lost myelin sheaths can be achieved as early as thirteen days after intoxication; in Wistar rats immunosuppressed with cyclophosphamide the process is delayed and in rats administered cyclosporine it may be accelerated. Aiming the enlightening of those complex processes, all events concerning the myelinating cells in an experimental model are herein presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alterations due to aging in the peripheral nerves can affect the physiology of these structures. Thus, the purpose of the present study was to describe the activity of the MMP-2 and MMP-9, as well as the structure and composition of the extracellular matrix of the rat sciatic nerve during maturation and aging. Our results have shown that the extracellular matrix of the sciatic nerve of 30-, 180- and 730-day-old Wistar rats present ultrastructural, morphometrical and biochemical changes during aging. The perineurium was the structure most affected by age, as evidenced by a decrease in thickness and in collagen fibril content. Cytochemical analysis detected proteoglycans in the basal membrane of Schwann cells and around perineural cells, as well as on the collagen fibrils of the perineurium and endoneurium at all ages. Biochemical analyses showed that the quantity of non-collagenous proteins was higher in 730-day-old animals compared to other ages, while the uronic acid content was higher in 30-day-old animals. Morphometrical analysis detected greater numbers of myelinated fibers and increased myelin thickness in 180-day-old animals. Zymography analysis detected greater amounts and activity of MMP-2 and MMP-9 in 180- and 730-day-old animals compared to younger rats. In conclusion, our results showed changes in the structural organization and composition of extracellular matrix of the sciatic nerve during aging, such as increase in the non-collagenous protein content and higher MMP-2 and MMP-9 activity, decrease in uronic acid concentration and in collagen fibril content in the perineurium, as well as degeneration of nerve fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75(NTR) and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Both groups treated with G-CSF showed increased p75(NTR) and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. The reduction in p75(NTR) and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF.