5 resultados para Cell mechanical properties

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As graphene has become one of the most important materials, there is renewed interest in other similar structures. One example is silicene, the silicon analogue of graphene. It shares some of the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the influence of a fluorescent dye (rhodamine B) on the physical and mechanical properties of three different luting cements: a conventional adhesive luting cement (RelyX ARC, 3M/ESPE), a self-adhesive luting cement (RelyX U-200, 3M/ESPE), and a self-etching and self-adhesive luting cement (SeT PP, SDI). The cements were mixed with 0.03 wt% rhodamine B, formed into bar-shaped specimens (n = 10), and light cured using an LED curing unit (Radii, SDI) with a radiant exposure of 32 J/cm(2) . The Knoop hardness (KHN), flexural strength (FS), and Young's modulus (YM) analyses were evaluated after storage for 24 h. Outcomes were subjected to two-way ANOVA and Tukey's test (P = 0.05) for multiple comparisons. No significant differences in FS or YM were observed among the tested groups (P ≥ 0.05); the addition of rhodamine B increased the hardness of the luting cements tested. The addition of a fluorescent agent at 0.03 wt% concentration does not negatively affect the physical-mechanical properties of the luting cement polymerization behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work addresses the development and characterization of porous chitosan-alginate based polyelectrolyte complexes, obtained by using two different proportions of the biocompatible surfactant Pluronic F68. These biomaterials are proposed for applications as biodegradable and biocompatible wound dressing and/or scaffolds. The results indicate that thickness, roughness, porosity and liquid uptake of the membranes increase with the amount of surfactant used, while their mechanical properties and stability in aqueous media decrease. Other important properties such as color and surface hydrophilicity (water contact angle) are not significantly altered or did not present a clear tendency of variation with the increase of the amount of surfactant added to the polyelectrolyte complexes, such as real density, average pore diameter, total pore volume and surface area. The prepared biomaterials were not cytotoxic to L929 cells. In conclusion, it is possible to tune the physicochemical properties of chitosan-alginate polyelectrolyte complexes, through the variation of the proportion of surfactant (Pluronic F68) added to the mixture, so as to enable the desired application of these biomaterials.