2 resultados para Attaching and effacing Escherichia coli

em Repositório da Produção Científica e Intelectual da Unicamp


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avian pathogenic Escherichia coli (APEC) strains belong to a category that is associated with colibacillosis, a serious illness in the poultry industry worldwide. Additionally, some APEC groups have recently been described as potential zoonotic agents. In this work, we compared APEC strains with extraintestinal pathogenic E. coli (ExPEC) strains isolated from clinical cases of humans with extra-intestinal diseases such as urinary tract infections (UTI) and bacteremia. PCR results showed that genes usually found in the ColV plasmid (tsh, iucA, iss, and hlyF) were associated with APEC strains while fyuA, irp-2, fepC sitDchrom, fimH, crl, csgA, afa, iha, sat, hlyA, hra, cnf1, kpsMTII, clpVSakai and malX were associated with human ExPEC. Both categories shared nine serogroups (O2, O6, O7, O8, O11, O19, O25, O73 and O153) and seven sequence types (ST10, ST88, ST93, ST117, ST131, ST155, ST359, ST648 and ST1011). Interestingly, ST95, which is associated with the zoonotic potential of APEC and is spread in avian E. coli of North America and Europe, was not detected among 76 APEC strains. When the strains were clustered based on the presence of virulence genes, most ExPEC strains (71.7%) were contained in one cluster while most APEC strains (63.2%) segregated to another. In general, the strains showed distinct genetic and fingerprint patterns, but avian and human strains of ST359, or ST23 clonal complex (CC), presented more than 70% of similarity by PFGE. The results demonstrate that some zoonotic-related STs (ST117, ST131, ST10CC, ST23CC) are present in Brazil. Also, the presence of moderate fingerprint similarities between ST359 E. coli of avian and human origin indicates that strains of this ST are candidates for having zoonotic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.