3 resultados para Art Conservation
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests.
Resumo:
Passiflora species are distributed throughout Latin America, and Brazil and Colombia serve as the centers of diversity for this genus. We performed cross-species amplification to evaluate 109 microsatellite loci in 14 Passiflora species and estimated the diversity and genetic structure of Passiflora cincinnata, Passiflora setaceae and Passiflora edulis. A total of 127 accessions, including 85 accessions of P. edulis, a commercial species, and 42 accessions of 13 wild species, were examined. The cross-species amplification was effective for obtaining microsatellite loci (average cross-amplification of 70%). The average number of alleles per locus (five) was relatively low, and the average diversity ranged from 0.52 in P. cincinnata to 0.32 in P. setacea. The Bayesian analyses indicated that the P. cincinnata and P. setacea accessions were distributed into two groups, and the P. edulis accessions were distributed into five groups. Private alleles were identified, and suggestions for core collections are presented. Further collections are necessary, and the information generated may be useful for breeding and conservation.
Resumo:
Growth in the development and production of engineered nanoparticles (ENPs) in recent years has increased the potential for interactions of these nanomaterials with aquatic and terrestrial environments. Carefully designed studies are therefore required in order to understand the fate, transport, stability, and toxicity of nanoparticles. Natural organic matter (NOM), such as the humic substances found in water, sediment, and soil, is one of the substances capable of interacting with ENPs. This review presents the findings of studies of the interaction of ENPs and NOM, and the possible effects on nanoparticle stability and the toxicity of these materials in the environment. In addition, ENPs and NOM are utilized for many different purposes, including the removal of metals and organic compounds from effluents, and the development of new electronic sensors and other devices for the detection of active substances. Discussion is therefore provided of some of the ways in which NOM can be used in the production of nanoparticles. Although there has been an increase in the number of studies in this area, further progress is needed to improve understanding of the dynamic interactions between ENPs and NOM.