7 resultados para Anionic polyelectrolytes
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Transfer of reaction products formed on the surfaces of two mutually rubbed dielectric solids makes an important if not dominating contribution to triboelectricity. New evidence in support of this statement is presented in this report, based on analytical electron microscopy coupled to electrostatic potential mapping techniques. Mechanical action on contacting surface asperities transforms them into hot-spots for free-radical formation, followed by electron transfer producing cationic and anionic polymer fragments, according to their electronegativity. Polymer ions accumulate creating domains with excess charge because they are formed at fracture surfaces of pulled-out asperities. Another factor for charge segregation is the low polymer mixing entropy, following Flory and Huggins. The formation of fractal charge patterns that was previously described is thus the result of polymer fragment fractal scatter on both contacting surfaces. The present results contribute to the explanation of the centuries-old difficulties for understanding the triboelectric series and triboelectricity in general, as well as the dissipative nature of friction, and they may lead to better control of friction and its consequences.
Resumo:
A novel capillary electrophoresis method using capacitively coupled contactless conductivity detection is proposed for the determination of the biocide tetrakis(hydroxymethyl)phosphonium sulfate. The feasibility of the electrophoretic separation of this biocide was attributed to the formation of an anionic complex between the biocide and borate ions in the background electrolyte. Evidence of this complex formation was provided by (11) B NMR spectroscopy. A linear relationship (R(2) = 0.9990) between the peak area of the complex and the biocide concentration (50-900 μmol/L) was found. The limit of detection and limit of quantification were 15.0 and 50.1 μmol/L, respectively. The proposed method was applied to the determination of tetrakis(hydroxymethyl)phosphonium sulfate in commercial formulations, and the results were in good agreement with those obtained by the standard iodometric titration method. The method was also evaluated for the analysis of tap water and cooling water samples treated with the biocide. The results of the recovery tests at three concentration levels (300, 400, and 600 μmol/L) varied from 75 to 99%, with a relative standard deviation no higher than 9%.
Resumo:
The formation of mono-species biofilm (Listeria monocytogenes) and multi-species biofilms (Enterococcus faecium, Enterococcus faecalis, and L. monocytogenes) was evaluated. In addition, the effectiveness of sanitation procedures for the control of the multi-species biofilm also was evaluated. The biofilms were grown on stainless steel coupons at various incubation temperatures (7, 25 and 39°C) and contact times (0, 1, 2, 4, 6 and 8days). In all tests, at 7°C, the microbial counts were below 0.4 log CFU/cm(2) and not characteristic of biofilms. In mono-species biofilm, the counts of L. monocytogenes after 8days of contact were 4.1 and 2.8 log CFU/cm(2) at 25 and 39°C, respectively. In the multi-species biofilms, Enterococcus spp. were present at counts of 8 log CFU/cm(2) at 25 and 39°C after 8days of contact. However, the L. monocytogenes in multi-species biofilms was significantly affected by the presence of Enterococcus spp. and by temperature. At 25°C, the growth of L. monocytogenes biofilms was favored in multi-species cultures, with counts above 6 log CFU/cm(2) after 8days of contact. In contrast, at 39°C, a negative effect was observed for L. monocytogenes biofilm growth in mixed cultures, with a significant reduction in counts over time and values below 0.4 log CFU/cm(2) starting at day 4. Anionic tensioactive cleaning complemented with another procedure (acid cleaning, disinfection or acid cleaning+disinfection) eliminated the multi-species biofilms under all conditions tested (counts of all micro-organisms<0.4 log CFU/cm(2)). Peracetic acid was the most effective disinfectant, eliminating the multi-species biofilms under all tested conditions (counts of the all microorganisms <0.4 log CFU/cm(2)). In contrast, biguanide was the least effective disinfectant, failing to eliminate biofilms under all the test conditions.
Resumo:
The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8days). At 7°C, the counts of E. faecalis and E. faecium were below 2log10CFU/cm(2). For the temperatures of 25 and 39°C, after 1day, the counts of E. faecalis and E. faecium were 5.75 and 6.07log10CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4log10CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms.
Resumo:
Fundamental aspects of the conception and applications of ecomaterials, in particular porous materials in the perspective of green chemistry are discussed in this paper. General recommendations for description and classification of porous materials are reviewed briefly. By way of illustration, some case studies of materials design and applications in pollution detection and remediation are described. It is shown here how different materials developed by our groups, such as porous glasses, ecomaterials from biomass and anionic clays were programmed to perform specific functions. A discussion of the present and future of ecomaterials in green chemistry is presented along with important key goals.
Resumo:
Three compounds have been synthesized with formulae [3-MeRad][Ni(dmit)2] (1), [4-MeRad][Ni(dmit)2] (2) and [4-PrRad][Ni(dmit)2] (3) where [Ni(dmit)2]- is an anionic pi-radical (dmit = 1,3-dithiol-2-thione-4,5-dithiolate) and [3-MeRad]+ is 3-N-methylpyridinium alpha-nitronyl nitroxide, [4-MeRad]+ is 4-N-methylpyridinium alpha-nitronyl nitroxide and [4-PrRad]+ is 4-N-propylpyridinium alpha-nitronyl nitroxide. The temperature-dependent magnetic susceptibility of 1 revealed that an antiferromagnetic interaction operates between the 3-MeRad+ radical cations with exchange coupling constants of J1 = - 1.72 cm-1 and antiferromagnetism assigned to the spin ladder chains of the Ni(dmit)2 radical anions. Compound 1 exhibits semiconducting behavior and 3 presents capacitor behavior in the temperature range studied (4 - 300 K).
Resumo:
One of the main objectives of applying edible coatings on fruits surface is to create a protective film to reduce weight loss due to evaporation and transpiration and also to decrease the risk of fruit rot caused by environmental contamination, in order to improve the visual aspect. Therefore, it is possible to increase shelf life, and decrease post harvest losses. Persimmon is a much appreciated fruit, with high potential for export, but sensitive to handling and storage. This study aimed to evaluate the effect of applying the edible coating Megh Wax ECF-124 (18% of active composts, consisting of emulsion of carnauba wax, anionic surfactant, preservative and water) produced by Megh Industry and Commerce Ltda in three different concentrations (25, 50 and 100%) on post harvest quality of 'Fuyu' persimmon stored for 14 days. The attributes evaluated for quality were: firmness, pH, acidity, soluble solids, weight loss and color. The results showed that application of carnauba wax in different concentrations was effective on decreasing weight loss of persimmon cv. Fuyu and maintenance of color aspects. Treatment at lower concentration, 25%, showed lower rate of discharge, but high concentrations showed lower values of mass loss. Carnauba wax application showed a high potential for use on postharvest conservation, and can be applied together with other technologies, helping to maintain quality for export.