11 resultados para 8-hydroxyquinoline and its halogenated derivatives
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 μg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 μg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.
Resumo:
The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.
Resumo:
A randomized controlled trial study was performed to evaluate the efficacy of transcutaneous tibial nerve stimulation (TTNS) and sham TTNS, in patients with Parkinson disease (PD) with lower urinary tract symptoms (LUTS). Randomized controlled trial. Thirteen patients with a diagnosis of PD and bothersome LUTS were randomly allocated to one of the following groups: Group I: TTNS group (n = 8) and group II: Sham group (n = 5). Both groups attended twice a week during 5 weeks; each session lasted 30 minutes. Eight patients received TTNS treatment and 5 subjects allocated to group II were managed with sham surface electrodes that delivered no electrical stimulation. Assessments were performed before and after the treatment; they included a 3-day bladder diary, Overactive Bladder Questionnaire (OAB-V8), and the International Consultation on Incontinence Quality of Life Questionnaire Short Form (ICIQ-SF), and urodynamic evaluation. Following 5 weeks of treatment, patients allocated to TTNS demonstrated statistically significant reductions in the number of urgency episodes (P = .004) and reductions in nocturia episodes (P < .01). Participants allocated to active treatment also showed better results after treatment in the OAB-V8 and ICIQ-SF scores (P < .01, respectively). Urodynamic testing revealed that patients in the active treatment group showed improvements in intravesical volume at strong desire to void (P < .05) and volume at urgency (P < .01) when compared to subjects in the sham treatment group. These findings suggest that TTNS is effective in the treatment of LUTS in patients with PD, reducing urgency and nocturia episodes and improving urodynamic parameters as well as symptom scores measured by the OAB-V8 and health-related quality-of-life scores measured by the ICIQ-SF.
Resumo:
OBJECTIVE: To screen for mutations in AMH and AMHR2 genes in patients with persistent Müllerian duct syndrome (PMDS). PATIENTS AND METHOD: Genomic DNA of eight patients with PMDS was obtained from peripheral blood leukocytes. Directed sequencing of the coding regions and the exon-intron boundaries of AMH and AMHR2 were performed. RESULTS: The AMH mutations p.Arg95*, p.Arg123Trp, c.556-2A>G, and p.Arg502Leu were identified in five patients; and p.Gly323Ser and p.Arg407* in AMHR2 of two individuals. In silico analyses of the novel c.556-2A>G, p.Arg502Leu and p.Arg407* mutations predicted that they were harmful and were possible causes of the disease. CONCLUSION: A likely molecular etiology was found in the eight evaluated patients with PMDS. Four mutations in AMH and two in AMHR2 were identified. Three of them are novel mutations, c.556-2A>G, and p.Arg502Leu in AMH; and p.Gly323Ser in AMHR2. Arq Bras Endocrinol Metab. 2012;56(8):473-8
Resumo:
IKK epsilon (IKKε) is induced by the activation of nuclear factor-κB (NF-κB). Whole-body IKKε knockout mice on a high-fat diet (HFD) were protected from insulin resistance and showed altered energy balance. We demonstrate that IKKε is expressed in neurons and is upregulated in the hypothalamus of obese mice, contributing to insulin and leptin resistance. Blocking IKKε in the hypothalamus of obese mice with CAYMAN10576 or small interfering RNA decreased NF-κB activation in this tissue, relieving the inflammatory environment. Inhibition of IKKε activity, but not TBK1, reduced IRS-1(Ser307) phosphorylation and insulin and leptin resistance by an improvement of the IR/IRS-1/Akt and JAK2/STAT3 pathways in the hypothalamus. These improvements were independent of body weight and food intake. Increased insulin and leptin action/signaling in the hypothalamus may contribute to a decrease in adiposity and hypophagia and an enhancement of energy expenditure accompanied by lower NPY and increased POMC mRNA levels. Improvement of hypothalamic insulin action decreases fasting glycemia, glycemia after pyruvate injection, and PEPCK protein expression in the liver of HFD-fed and db/db mice, suggesting a reduction in hepatic glucose production. We suggest that IKKε may be a key inflammatory mediator in the hypothalamus of obese mice, and its hypothalamic inhibition improves energy and glucose metabolism.
Resumo:
Seizures in some 30% to 40% of patients with epilepsy fail to respond to antiepileptic drugs or other treatments. While much has been made of the risks of new drug therapies, not enough attention has been given to the risks of uncontrolled and progressive epilepsy. This critical review summarizes known risks associated with refractory epilepsy, provides practical clinical recommendations, and indicates areas for future research. Eight international epilepsy experts from Europe, the United States, and South America met on May 4, 2013, to present, review, and discuss relevant concepts, data, and literature on the consequences of refractory epilepsy. While patients with refractory epilepsy represent the minority of the population with epilepsy, they require the overwhelming majority of time, effort, and focus from treating physicians. They also represent the greatest economic and psychosocial burdens. Diagnostic procedures and medical/surgical treatments are not without risks. Overlooked, however, is that these risks are usually smaller than the risks of long-term, uncontrolled seizures. Refractory epilepsy may be progressive, carrying risks of structural damage to the brain and nervous system, comorbidities (osteoporosis, fractures), and increased mortality (from suicide, accidents, sudden unexpected death in epilepsy, pneumonia, vascular disease), as well as psychological (depression, anxiety), educational, social (stigma, driving), and vocational consequences. Adding to this burden is neuropsychiatric impairment caused by underlying epileptogenic processes (essential comorbidities), which appears to be independent of the effects of ongoing seizures themselves. Tolerating persistent seizures or chronic medicinal adverse effects has risks and consequences that often outweigh risks of seemingly more aggressive treatments. Future research should focus not only on controlling seizures but also on preventing these consequences.
Resumo:
To evaluate the prevalence and associated risk factors for urinary incontinence, as well as its association with multimorbidity among Brazilian women aged 50 or over. This was a secondary analysis of a cross-sectional population-based study including 622 women 50 years or older, conducted in the city of Campinas-SP-Brazil. The dependent variable was Urinary Incontinence (UI), defined as any complaint of urine loss. The independent variables were sociodemographic data, health-related habits, self-perception of health and functional capacity evaluation. Statistical analysis was carried out using the Chi-square test and Poisson regression. The mean age of the women was 64. UI was prevalent in 52.3% of these women: Mixed UI (26.6%), Urge UI (13.2%) and Stress UI (12.4%). Factors associated with a higher prevalence of UI were hypertension (OR 1.21, CI 1:01-1:47, P = 0.004), osteoarthritis (OR 1.24, CI 1:03-1:50, P = 0.022), physical activity ≥3 days/week (OR 1.21, CI 1:01-1:44, P = 0.039), BMI ≥ 25 at the time of the interview (OR 1.25, CI 1:04-1:49, P = 0.018), negative self-perception of health (OR 1.23, CI 1:06-1:44 P = 0.007) and limitations in daily living activities (PR 1:56 CI 1:16-2:10, P = 0.004). The prevalence of UI was high. Mixed incontinence was the most frequent type of UI. Many associated factors can be prevented or improved. Thus, health policies targeted at these combined factors could reduce their prevalence rate and possibly decrease the prevalence of UI. Neurourol. Urodynam. © 2014 Wiley Periodicals, Inc.
Resumo:
Current literature has elucidated a new phenotype, metabolically healthy obese (MHO), with risks of cardiovascular disease similar to that of normal weight individuals. Few studies have examined the MHO phenotype in an aging population, especially in association with subclinical CVD. This cross sectional study population consisted of 208 octogenarians and older. Anthropometrics, biochemical, and radiological parameters were measured to assess obesity, metabolic health (assessed by the National Cholesterol Education Program -Adult Treatment Panel (NCEP-ATP III) criteria), and subclinical measures of CVD. The prevalence of MHO was 13.5% (N = 28). No significant association with MHO was noted for age, coronary artery calcium score, cIMT, or hs-CRP > 3 mg/dl (p = NS). Our results suggest that the MHO phenotype exists in the elderly; however, subclinical CVD measures were not different in sub-group analysis suggesting traditional metabolic risk factor algorithms may not be accurate in the very elderly.
Resumo:
The presynaptic action of Bothriopsis bilineata smaragdina (forest viper) venom and Bbil-TX, an Asp49 PLA2 from this venom, was examined in detail in mouse phrenic nerve-muscle (PND) preparations in vitro and in a neuroblastoma cell line (SK-N-SH) in order to gain a better insight into the mechanism of action of the venom and associated Asp49 PLA2. In low Ca(2+) solution, venom (3μg/ml) caused a quadriphasic response in PND twitch height whilst at 10μg/ml the venom additionally induced an abrupt and marked initial contracture followed by neuromuscular facilitation, rhythmic oscillations of nerve-evoked twitches, alterations in baseline and progressive blockade. The venom slowed the relaxation phase of muscle twitches. In low Ca(2+), Bbil-TX [210nM (3μg/ml)] caused a progressive increase in PND twitch amplitude but no change in the decay time constant. Venom (10μg/ml) and Bbil-TX (210nM) caused minor changes in the compound action potential (CAP) amplitude recorded from sciatic nerve preparations, with no significant effect on rise time and latency; tetrodotoxin (3.1nM) blocked the CAP at the end of the experiments. In mouse triangularis sterni nerve-muscle (TSn-m) preparations, venom (10μg/ml) and Bbil-TX (210nM) significantly reduced the perineural waveform associated with the outward K(+) current while the amplitude of the inward Na(+) current was not significantly affected. Bbil-TX (210nM) caused a progressive increase in the quantal content of TSn-m preparations maintained in low Ca(2+) solution. Venom (3μg/ml) and toxin (210nM) increased the calcium fluorescence in SK-N-SH neuroblastoma cells loaded with Fluo3 AM and maintained in low or normal Ca(2+) solution. In normal Ca(2+), the increase in fluorescence amplitude was accompanied by irregular and frequent calcium transients. In TSn-m preparations loaded with Fluo4 AM, venom (10μg/ml) caused an immediate increase in intracellular Ca(2+) followed by oscillations in fluorescence and muscle contracture; Bbil-TX did not change the calcium fluorescence in TSn-m preparations. Immunohistochemical analysis of toxin-treated PND preparations revealed labeling of junctional ACh receptors but a loss of the presynaptic proteins synaptophysin and SNAP25. Together, these data confirm the presynaptic action of Bbil-TX and show that it involves modulation of K(+) channel activity and presynaptic protein expression.
Resumo:
Interactions between flowers and their visitors span the spectrum from mutualism to antagonism. The literature is rich in studies focusing on mutualism, but nectar robbery has mostly been investigated using phytocentric approaches focused on only a few plant species. To fill this gap, we studied the interactions between a nectar-robbing hermit hummingbird, Phaethornis ruber, and the array of flowers it visits. First, based on a literature review of the interactions involving P. ruber, we characterized the association of floral larceny to floral phenotype. We then experimentally examined the effects of nectar robbing on nectar standing crop and number of visits of the pollinators to the flowers of Canna paniculata. Finally, we asked whether the incorporation of illegitimate interactions into the analysis affects plant-hummingbird network structure. We identified 97 plant species visited by P. ruber and found that P. ruber engaged in floral larceny in almost 30 % of these species. Nectar robbery was especially common in flowers with longer corolla. In terms of the effect on C. paniculata, the depletion of nectar due to robbery by P. ruber was associated with decreased visitation rates of legitimate pollinators. At the community level, the inclusion of the illegitimate visits of P. ruber resulted in modifications of how modules within the network were organized, notably giving rise to a new module consisting of P. ruber and mostly robbed flowers. However, although illegitimate visits constituted approximately 9 % of all interactions in the network, changes in nestedness, modularity, and network-level specialization were minor. Our results indicate that although a flower robber may have a strong effect on the pollination of a particular plant species, the inclusion of its illegitimate interactions has limited capacity to change overall network structure.
Resumo:
Vasodilator-stimulated phosphoprotein (VASP) and Zyxin are interacting proteins involved in cellular adhesion and motility. PKA phosphorylates VASP at serine 157, regulating VASP cellular functions. VASP interacts with ABL and is a substrate of the BCR-ABL oncoprotein. The presence of BCR-ABL protein drives oncogenesis in patients with chronic myeloid leukemia (CML) due to a constitutive activation of tyrosine kinase activity. However, the function of VASP and Zyxin in BCR-ABL pathway and the role of VASP in CML cells remain unknown. In vitro experiments using K562 cells showed the involvement of VASP in BCR-ABL signaling. VASP and Zyxin inhibition decreased the expression of anti-apoptotic proteins, BCL2 and BCL-XL. Imatinib induced an increase in phosphorylation at Ser157 of VASP and decreased VASP and BCR-ABL interaction. VASP did not interact with Zyxin in K562 cells; however, after Imatinib treatment, this interaction was restored. Corroborating our data, we demonstrated the absence of phosphorylation at Ser157 in VASP in the bone marrow of CML patients, in contrast to healthy donors. Phosphorylation of VASP on Ser157 was restored in Imatinib responsive patients though not in the resistant patients. Therefore, we herein identified a possible role of VASP in CML pathogenesis, through the regulation of BCR-ABL effector proteins or the absence of phosphorylation at Ser157 in VASP.