6 resultados para 3D cell models
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.
Resumo:
Sickle cell disease (SCD) pathogenesis leads to recurrent vaso-occlusive and hemolytic processes, causing numerous clinical complications including renal damage. As vasoconstrictive mechanisms may be enhanced in SCD, due to endothelial dysfunction and vasoactive protein production, we aimed to determine whether the expression of proteins of the renin-angiotensin system (RAS) may be altered in an animal model of SCD. Plasma angiotensin II (Ang II) was measured in C57BL/6 (WT) mice and mice with SCD by ELISA, while quantitative PCR was used to compare the expressions of the genes encoding the angiotensin-II-receptors 1 and 2 (AT1R and AT2R) and the angiotensin-converting enzymes (ACE1 and ACE2) in the kidneys, hearts, livers and brains of mice. The effects of hydroxyurea (HU; 50-75mg/kg/day, 4weeks) treatment on these parameters were also determined. Plasma Ang II was significantly diminished in SCD mice, compared with WT mice, in association with decreased AT1R and ACE1 expressions in SCD mice kidneys. Treatment of SCD mice with HU reduced leukocyte and platelet counts and increased plasma Ang II to levels similar to those of WT mice. HU also increased AT1R and ACE2 gene expression in the kidney and heart. Results indicate an imbalanced RAS in an SCD mouse model; HU therapy may be able to restore some RAS parameters in these mice. Further investigations regarding Ang II production and the RAS in human SCD may be warranted, as such changes may reflect or contribute to renal damage and alterations in blood pressure.
Resumo:
Glucocorticoid (GC) therapies may adversely cause insulin resistance (IR) that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase B (AKT) substrate with 160 kDa (AS160) as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK) signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT)-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX) (1 mg/kg body weight) for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented β-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented β-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.
Resumo:
During the last ten years, graphene oxide has been explored in many applications due to its remarkable electroconductivity, thermal properties and mobility of charge carriers, among other properties. As discussed in this review, the literature suggests that a total characterization of graphene oxide must be conducted because oxidation debris (synthesis impurities) present in the graphene oxides could act as a graphene oxide surfactant, stabilizing aqueous dispersions. It is also important to note that the structure models of graphene oxide need to be revisited because of significant implications for its chemical composition and its direct covalent functionalization. Another aspect that is discussed is the need to consider graphene oxide surface chemistry. The hemolysis assay is recommended as a reliable test for the preliminary assessment of graphene oxide toxicity, biocompatibility and cell membrane interaction. More recently, graphene oxide has been extensively explored for drug delivery applications. An important increase in research efforts in this emerging field is clearly represented by the hundreds of related publications per year, including some reviews. Many studies have been performed to explore the graphene oxide properties that enable it to deliver more than one activity simultaneously and to combine multidrug systems with photothermal therapy, indicating that graphene oxide is an attractive tool to overcome hurdles in cancer therapies. Some strategic aspects of the application of these materials in cancer treatment are also discussed. In vitro studies have indicated that graphene oxide can also promote stem cell adhesion, growth and differentiation, and this review discusses the recent and pertinent findings regarding graphene oxide as a valuable nanomaterial for stem cell research in medicine. The protein corona is a key concept in nanomedicine and nanotoxicology because it provides a biomolecular identity for nanomaterials in a biological environment. Understanding protein corona-nanomaterial interactions and their influence on cellular responses is a challenging task at the nanobiointerface. New aspects and developments in this area are discussed.
Resumo:
ANKHD1 (Ankyrin repeat and KH domain-containing protein 1) is highly expressed and plays an important role in the proliferation and cell cycle progression of multiple myeloma (MM) cells. ANKHD1 downregulation modulates cell cycle gene expression and upregulates p21 irrespective of the TP53 mutational status of MM cell lines. The present study was aimed to investigate the role of ANKHD1 in MM in vitro clonogenicity and in vivo tumourigenicity, as well as the role of ANKHD1 in p21 transcriptional regulation. ANKHD1 silencing in MM cells resulted in significantly low no. of colonies formed and in slow migration as compared to control cells (p < 0.05). Furthermore, in xenograft MM mice models, tumour growth was visibly suppressed in mice injected with ANKHD1 silenced cells compared to the control group. There was a significant decrease in tumour volume (p = 0.006) as well as in weight (p = 0.02) in the group injected with silenced cells compared to those of the control group. Co-immunoprecipitation and chromatin immunoprecipitation (ChIP) assays confirmed the interaction between p21 and ANKHD1. Moreover, overexpression of ANKHD1 downregulated the activity of a p21 promoter in luciferase assays. Decrease in luciferase activity suggests a direct role of ANKHD1 in p21 transcriptional regulation. In addition confocal analysis after U266 cells were treated with Leptomycin B (LMB) for 24 h showed accumulation of ANKHD1 inside the nucleus as compared to untreated cells where ANKHD1 was found to be predominantly in cytoplasm. This suggests ANKHD1 might be shuttling between cytoplasm and nucleus. In conclusion, ANKHD1 promotes MM growth by repressing p21 a potent cell cycle regulator.