2 resultados para 12930-040
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
One of the great challenges of the scientific community on theories of genetic information, genetic communication and genetic coding is to determine a mathematical structure related to DNA sequences. In this paper we propose a model of an intra-cellular transmission system of genetic information similar to a model of a power and bandwidth efficient digital communication system in order to identify a mathematical structure in DNA sequences where such sequences are biologically relevant. The model of a transmission system of genetic information is concerned with the identification, reproduction and mathematical classification of the nucleotide sequence of single stranded DNA by the genetic encoder. Hence, a genetic encoder is devised where labelings and cyclic codes are established. The establishment of the algebraic structure of the corresponding codes alphabets, mappings, labelings, primitive polynomials (p(x)) and code generator polynomials (g(x)) are quite important in characterizing error-correcting codes subclasses of G-linear codes. These latter codes are useful for the identification, reproduction and mathematical classification of DNA sequences. The characterization of this model may contribute to the development of a methodology that can be applied in mutational analysis and polymorphisms, production of new drugs and genetic improvement, among other things, resulting in the reduction of time and laboratory costs.
Resumo:
The presence of calcium, iron, and zinc bound to human milk secretory IgA (sIgA) was investigated. The sIgA components were first separated by two-dimensional polyacrylamide gel electrophoresis and then identified by electrospray ionization-tandem mass spectrometry (ESI MS MS). The metal ions were detected by flame atomic absorption spectrometry after acid mineralization of the spots. The results showed eight protein spots corresponding to the IgA heavy chain constant region. Another spot was identified as the transmembrane secretory component. Calcium was bound to both the transmembrane component and the heavy chain constant region, while zinc was bound to the heavy chain constant region and iron was not bound with the identified proteins. The association of a metal ion with a protein is important for a number of reasons, and therefore, the findings of the present study may lead to a better understanding of the mechanisms of action and of additional roles that sIgA and its components play in human milk.