2 resultados para 090108 Satellite Space Vehicle and Missile Design and Testing
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), creatine-kinase (CK), creatine kinase-muscle B (CK-MB) and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain) were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days), respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01), while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01). Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain), carbonyl (plasma and brain) and micronucleus compared to the saline-group (p ≤ 0.01). Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required.
Resumo:
The present study evaluated the role of N-methyl-D-aspartate receptors (NMDARs) expressed in the dorsal root ganglia (DRG) in the inflammatory sensitization of peripheral nociceptor terminals to mechanical stimulation. Injection of NMDA into the fifth lumbar (L5)-DRG induced hyperalgesia in the rat hind paw with a profile similar to that of intraplantar injection of prostaglandin E2 (PGE2), which was significantly attenuated by injection of the NMDAR antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP-5) in the L5-DRG. Moreover, blockade of DRG AMPA receptors by the antagonist 6,7-dinitroquinoxaline-2,3-dione had no effect in the PGE2-induced hyperalgesia in the paw, showing specific involvement of NMDARs in this modulatory effect and suggesting that activation of NMDAR in the DRG plays an important role in the peripheral inflammatory hyperalgesia. In following experiments we observed attenuation of PGE2-induced hyperalgesia in the paw by the knockdown of NMDAR subunits NR1, NR2B, NR2D, and NR3A with antisense-oligodeoxynucleotide treatment in the DRG. Also, in vitro experiments showed that the NMDA-induced sensitization of cultured DRG neurons depends on satellite cell activation and on those same NMDAR subunits, suggesting their importance for the PGE2-induced hyperalgesia. In addition, fluorescent calcium imaging experiments in cultures of DRG cells showed induction of calcium transients by glutamate or NMDA only in satellite cells, but not in neurons. Together, the present results suggest that the mechanical inflammatory nociceptor sensitization is dependent on glutamate release at the DRG and subsequent NMDAR activation in satellite glial cells, supporting the idea that the peripheral hyperalgesia is an event modulated by a glutamatergic system in the DRG.