4 resultados para Óxidos metálicos - Aditivos
em Repositório da Produção Científica e Intelectual da Unicamp
Resumo:
Inductively Coupled Plasma Optical Emission Spectrometry was used to determine Ca, Mg, Mn, Fe, Zn and Cu in samples of processed and natural coconut water. The sample preparation consisted in a filtration step followed by a dilution. The analysis was made employing optimized instrumental parameters and the results were evaluated using methods of Pattern Recognition. The data showed common concentration values for the analytes present in processed and natural samples. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) indicated that the samples of different kinds were statistically different when the concentrations of all the analytes were considered simultaneously.
Resumo:
Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.
Resumo:
The aim of this research was to study the effect of chemical additives (lime and Portland cement) associated with sodium silicate on soil in order to obtain compressed soil bricks. Mini panels were constructed with such bricks being their physical and mechanical characteristics determined in laboratory conditions and their behavior evaluated through the association of destructive and non-destructive methods. For this purpose a sandy soil and a finely divided one were added to Portland cement and lime in the dosage of 6% and 10% taken in dry weight basis in relation to the dry soil. The sodium silicate dosage of 4% was also taken in dry weight basis in relation to the dry soil-cement or to the dry soil-lime. The compressed soil bricks were cured in a humidity chamber for 7; 28; 56 and 91 days. The bricks were laid on the fourteenth day to form prismatic mini panels each one with four layers of bricks. After 28; 56 and 91 days the mini panels were submitted to both; ultrasonic and compressive tests to determine its elastic properties (dynamic modulus) and the compressive resistance. The best results in terms of compressive strength, water absorption capacity or dynamic elastic modulus, were reached by the sandy soil added to 10% of Portland cement or lime associated with sodium silicate.
Resumo:
The research approaches recycling of urban waste compost (UWC) as an alternative fertilizer for sugarcane crop and as a social and environmental solution to the solids residuals growth in urban centers. A mathematical model was used in order to know the metal dynamics as decision support tool, aiming to establish of criteria and procedures for UWC's safe use, limited by the amount of heavy metal. A compartmental model was developed from experimental data in controlled conditions and partially checked with field data. This model described the heavy metal transference in the system soil-root-aerial portion of sugarcane plants and concluded that nickel was metal to be concern, since it takes approximately three years to be attenuated in the soil, reaching the aerial portions of the plant at high concentrations. Regarding factors such as clay content, oxide level and soil pH, it was observed that for soil with higher buffering capacity, the transfer of the majority of the metals was slower. This model may become an important tool for the attainment of laws regarding the UWC use, aiming to reduce environment contamination the waste accumulation and production costs.