38 resultados para TUMOR-BEARING MICE
Resumo:
The aim of this investigation was to evaluate the effects of 3 overtraining (OT) protocols on the glial activation and apoptosis in the spinal cords of mice. Rodents were divided into control (C; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR). The incremental load test, ambulation test, exhaustive test and functional behavioural assessment were used as performance evaluation parameters. 36 h after the exhaustive test, the dorsal and ventral parts of the lumbar spinal cord (L4-L6) were dissected for subsequent protein analysis by immunoblotting. The OT protocols led to similar responses of some performance parameters. The ventral glial fibrillary acidic protein (GFAP) protein levels were diminished in the OTR/up and OTR compared to CT and OTR/down groups. The ventral ionized calcium binding adaptor molecule 1 (Iba-1), and the dorsal GFAP and Iba-1 protein levels were increased in the OTR/down compared to the other groups. The ratio between the cleaved capase-3/caspase-3 and cleaved caspase-9/caspase-9 measured in the spinal cord were not sensitive to the OT protocols. In summary, the OTR/down activated the glial cells in the motor (i. e. Iba-1) and sensory (i. e. GFAP and Iba-1) neurons without leading to apoptosis.
Resumo:
Oxidative stress and inflammatory processes strongly contribute to pathogenesis in Duchenne muscular dystrophy (DMD). Based on evidence that excess iron may increase oxidative stress and contribute to the inflammatory response, we investigated whether deferoxamine (DFX), a potent iron chelating agent, reduces oxidative stress and inflammation in the diaphragm (DIA) muscle of mdx mice (an experimental model of DMD). Fourteen-day-old mdx mice received daily intraperitoneal injections of DFX at a dose of 150 mg/kg body weight, diluted in saline, for 14 days. C57BL/10 and control mdx mice received daily intraperitoneal injections of saline only, for 14 days. Grip strength was evaluated as a functional measure, and blood samples were collected for biochemical assessment of muscle fiber degeneration. In addition, the DIA muscle was removed and processed for histopathology and Western blotting analysis. In mdx mice, DFX reduced muscle damage and loss of muscle strength. DFX treatment also resulted in a significant reduction of dystrophic inflammatory processes, as indicated by decreases in the inflammatory area and in NF-κB levels. DFX significantly decreased oxidative damage, as shown by lower levels of 4-hydroxynonenal and a reduction in dihydroethidium staining in the DIA muscle of mdx mice. The results of the present study suggest that DFX may be useful in therapeutic strategies to ameliorate dystrophic muscle pathology, possibly via mechanisms involving oxidative and inflammatory pathways.
Resumo:
Dystrophin-deficient muscles have repeated cycles of necrosis and regeneration, being susceptible to injury induced by muscle contractions. Some studies have demonstrated that tendons are also affected in mdx mice, based especially on the changes in biomechanical properties arising from the respective linked muscles. However, most studies have focused only on alterations in the myotendinous junction. Thus, the purpose of this work was to study biochemical and morphological alterations in the Achilles tendons of 60-day-old mdx mice. Hydroxyproline quantification, showed higher collagen concentration in the mdx mice as compared with the control. No difference between the tendons of both groups was found in the noncollagenous proteins dosage, and in the amount of collagen type III detected in the western blotting analysis. The zymography for gelatinases detection showed higher amounts of metaloproteinase-2 (active isoform) and of metalloproteinase-9 (latent isoform) in the mdx mice. Measurements of birefringence, using polarization microscopy, showed higher molecular organization of the collagen fibers in the tendons of mdx mice in comparison to the control group, with presence of larger areas of crimp. Ponceau SS-stained tendon sections showed stronger staining of the extracellular matrix in the mdx groups. Toluidine blue-stained sections showed more intense basophilia in tendons of the control group. In morphometry, a higher number of inflammatory cells was detected in the epitendon of mdx group. In conclusion, the Achilles tendon of 60-day-old mdx mice presents higher collagen concentration and organization of the collagen fibers, enhanced metalloproteinase-2 activity, as well as prominent presence of inflammatory cells and lesser proteoglycans.
Resumo:
Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.
Resumo:
Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial-stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial-stromal transition are also discussed.
Resumo:
CONTEXT: Desmoid tumors constitute one of the most important extraintestinal manifestations of familial adenomatous polyposis. The development of desmoids is responsible for increasing morbidity and mortality rates in cases of familial adenomatous polyposis. OBJECTIVES: To evaluate the occurrence of desmoid tumors in familial adenomatous polyposis cases following prophylactic colectomy and to present patient outcome. METHODS: Between 1984 and 2008, 68 patients underwent colectomy for familial adenomatous polyposis at the School of Medical Sciences Teaching Hospital, University of Campinas, SP, Brazil. Desmoid tumors were found in nine (13.2%) of these patients, who were studied retrospectively by consulting their medical charts with respect to clinical and surgical data. RESULTS: Of nine patients, seven (77.8%) were submitted to laparotomy for tumor resection. Median age at the time of surgery was 33.9 years (range 22-51 years). Desmoid tumors were found in the abdominal wall in 3/9 cases (33.3%) and in an intra-abdominal site in the remaining six cases (66.7%). Median time elapsed between ileal pouch-anal anastomosis and diagnosis of desmoid tumor was 37.5 months (range 14-60 months), while the median time between colectomy with ileorectal anastomosis and diagnosis was 63.7 months (range 25-116 months). In 6/9 (66.7%) patients with desmoid tumors, the disease was either under control or there was no evidence of tumor recurrence at a follow-up visit made a mean of 63.1 months later (range 12-240 months). CONCLUSIONS: Desmoid tumors were found in 13.2% of cases of familial adenomatous polyposis following colectomy; therefore, familial adenomatous polyposis patients should be followed-up and surveillance should include abdominal examination to detect signs and symptoms. Treatment options include surgery and clinical management with antiestrogens, antiinflammatory drugs or chemotherapy.
Resumo:
The authors report a rare case of granular cell tumor in the left medial rectus muscle of a seven-year-old boy. Clinical, pathologic and radiologic findings of the present case are described and a brief literature review is undertaken.