33 resultados para BRAIN-STEM MECHANISMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain death results in the breakdown of effective central regulatory mechanisms of cardiocirculatory stability, even in patients with artificial mechanical ventilation, correction of electrolytic and acid-basic disorders and maximal conventional pharmacological support of the circulation. Recent evidences have shown that the fall of vasopressin levels in the blood circulation significantly influences the cardiocirculatory stability of patients with brain death, and its exogenous administration is defended by many authors for the management of multiorgan donor patients. In this brief review we analyse and discuss some experimental and clinical relevant studies about the role of vasopressin in the control of cardiocirculatory stability in brain death, and its potential usefulness in the management of multiorgan donor. We conclude that the role of vasopressin in the pathophysiology of brain death and its usefulness as a pharmacological agent in the management of multiorgan donor are not well elucidated, deserving further investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytochemical investigation of the hexane extract from the stem of Xylopia laevigata led to the isolation of the ent-kaurane diterpenoids, ent-kaur-16-en-19-oic acid, 4-epi-kaurenic acid, ent-16β-hydroxy-17-acetoxy-kauran-19-al, ent-3β-hydroxy-kaur-16-en-19-oic acid, and ent-16β,17-dihydroxy-kauran-19-oic acid, as well as spathulenol and a mixture of β-sitosterol, stigmasterol and campesterol. The identification of the compounds was performed on the basis of spectrometric methods including GC-MS, IR, and 1D and 2D NMR. Potent larvicidal activity against Aedes aegypti larvae with LC50 of 62.7 µg mL-1 was found for ent-3β-hydroxy-kaur-16-en-19-oic acid. This compound also showed significant antifungal activity against Candida glabrata and Candida dubliniensis with MIC values of 62.5 µg mL-1.