48 resultados para Ames assay
Resumo:
During the last ten years, graphene oxide has been explored in many applications due to its remarkable electroconductivity, thermal properties and mobility of charge carriers, among other properties. As discussed in this review, the literature suggests that a total characterization of graphene oxide must be conducted because oxidation debris (synthesis impurities) present in the graphene oxides could act as a graphene oxide surfactant, stabilizing aqueous dispersions. It is also important to note that the structure models of graphene oxide need to be revisited because of significant implications for its chemical composition and its direct covalent functionalization. Another aspect that is discussed is the need to consider graphene oxide surface chemistry. The hemolysis assay is recommended as a reliable test for the preliminary assessment of graphene oxide toxicity, biocompatibility and cell membrane interaction. More recently, graphene oxide has been extensively explored for drug delivery applications. An important increase in research efforts in this emerging field is clearly represented by the hundreds of related publications per year, including some reviews. Many studies have been performed to explore the graphene oxide properties that enable it to deliver more than one activity simultaneously and to combine multidrug systems with photothermal therapy, indicating that graphene oxide is an attractive tool to overcome hurdles in cancer therapies. Some strategic aspects of the application of these materials in cancer treatment are also discussed. In vitro studies have indicated that graphene oxide can also promote stem cell adhesion, growth and differentiation, and this review discusses the recent and pertinent findings regarding graphene oxide as a valuable nanomaterial for stem cell research in medicine. The protein corona is a key concept in nanomedicine and nanotoxicology because it provides a biomolecular identity for nanomaterials in a biological environment. Understanding protein corona-nanomaterial interactions and their influence on cellular responses is a challenging task at the nanobiointerface. New aspects and developments in this area are discussed.
Resumo:
Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.
Resumo:
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.
Resumo:
Rubus niveus Thunb. plant belongs to Rosaceae family and have been used traditionally to treat wounds, burns, inflammation, dysentery, diarrhea and for curing excessive bleeding during menstrual cycle. The present study was undertaken to investigate the in vivo genotoxicity of Rubus niveus aerial parts extract and its possible chemoprotection on doxorubicin (DXR)-induced DNA damage. In parallel, the main phytochemicals constituents in the extract were determined. The animals were exposed to the extract for 24 and 48h, and the doses selected were 500, 1000 and 2000mg/kg b.w. administered by gavage alone or prior to DXR (30mg/kg b.w.) administered by intraperitoneal injection. The endpoints analyzed were DNA damage in bone marrow and peripheral blood cells assessed by the alkaline alkaline (pH>13) comet assay and bone marrow micronucleus test. The results of chemical analysis of the extract showed the presence of tormentic acid, stigmasterol, quercitinglucoronide (miquelianin) and niga-ichigoside F1 as main compounds. Both cytogenetic endpoints analyzed showed that there were no statistically significant differences (p>0.05) between the negative control and the treated groups with the two higher doses of Rubus niveus extract alone, demonstrating absence of genotoxic and mutagenic effects. Aneugenic/clastogenic effect was observed only at 2000mg/kg dose. On the other hand, in the both assays and all tested doses were observed a significant reduction of DNA damage and chromosomal aberrations in all groups co-treated with DXR and extract compared to those which received only DXR. These results indicate that Rubus niveus aerial parts extract did not revealed any genotoxic effect, but presented some aneugenic/clastogenic effect at higher dose; and suggest that it could be a potential adjuvant against development of second malignant neoplasms caused by the cancer chemotherapic DXR.
Resumo:
The development of inhibitory antibodies against factor VIII (FVIII) (inhibitor) is the major complication in haemophilia A patients. The FVIII-binding antibodies development comprises a polyclonal immunoglobulin (Ig) G response. Recent studies showed strong correlation between the presence of neutralizing anti-FVIII antibodies (inhibitors) and IgG4 subclass. The aim of this study was to evaluate anti-FVIII IgG subclasses in haemophilia A patients with inhibitor both in a cross-sectional and in a longitudinal analysis. Inhibitors were determined by Nijmegen-Bethesda assay. Anti-FVIII IgG subclasses were performed by ELISA, and samples from 20 healthy individuals were used to validate the test. We studied 25 haemophilia A patients with inhibitor, previously treated exclusively with plasma-derived FVIII concentrates or bypassing agents. The IgG subclasses distributions were evaluated in two groups of patients classified according to inhibitor response. IgG1 and IgG4 antibodies were most prominent in haemophilia A patients with inhibitors when compared with IgG2 and IgG3. This study reports for the first time the behaviour of FVIII-binding IgG1 and IgG4 subclasses in a longitudinal analysis, in a clinical setting, of high-response inhibitor haemophilia A patients, showing the correlation of IgG4 and the inhibitor titres. In spite of being considered a non-pathologic antibody subclass with anti-inflammatory properties in other situations, IgG4 is correlated with the presence of high-titre inhibitor in the haemophilia setting. The comprehension of the IgG4 role in immune response may be crucial to establish the process for designing specific tolerance to FVIII.
Resumo:
Essential oil from the leaves of Guatteria australis was obtained by hydrodistillation, analyzed by Gas Chromatography coupled to Mass Spectromery (GC-MS) and their antiproliferative, antileishmanial, antibacterial, antifungal and antioxidant activities were also evaluated. Twenty-three compounds were identified among which germacrene B (50.66%), germacrene D (22.22%) and (E)-caryophyllene (8.99%) were the main compounds. The highest antiproliferative activity was observed against NCI-ADR/RES (TGI = 31.08 μg/ml) and HT-29 (TGI = 32.81 μg/ml) cell lines. It also showed good antileishmanial activity against Leishmania infantum (IC50 = 30.71 μg/ml). On the other hand, the oil exhibited a small effect against Staphylococcus aureus ATCC 6538, S. aureus ATCC 14458 and Escherichia coli ATCC 10799 (MIC = 250 μg/ml), as well as small antioxidant activity (457 μmol TE/g) assessed through ORACFL assay. These results represent the first report regarding chemical composition and bioactivity of G. australis essential oil.
Resumo:
The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI50) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI50 values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs.
Resumo:
Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2μM). Nek5 silenced cells as well as cells expressing a kinase dead version of Nek5, displayed an increase in ROS formation after 4h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells.
Resumo:
This study investigated the presence of target bacterial species and the levels of endotoxins in teeth with apical periodontitis. Levels of inflammatory mediators (interleukin [IL]-1β and tumor necrosis factor [TNF]-α) were determined after macrophage stimulation with endodontic content after different phases of endodontic therapy using different irrigants. Thirty primarily infected root canals were randomly assigned into 3 groups according to the irrigant used for root canal preparation (n = 10 per group): GI: 2.5% sodium hypochlorite, GII: 2% chlorhexidine gel, and GIII (control group): saline solution. Root canal samples were taken by using paper points before (s1) and after root canal instrumentation (s2), subsequently to 17% EDTA (s3), after 30 days of intracanal medication (Ca[OH]2 + saline solution) (s4), and before root canal obturation (s5). Polymerase chain reaction (16S recombinant DNA) and limulus amebocyte lysate assay were used for bacterial and endotoxin detection, respectively. Macrophages were stimulated with the root canal contents for IL-1β/TNF-α measurement using enzyme-linked immunosorbent assay. Porphyromonas gingivalis (17/30), Porphyromonas endodontalis (15/30), and Prevotella nigrescens (11/30) were the most prevalent bacterial species. At s1, endotoxins were detected in 100% of the root canals (median = 32.43 EU/mL). In parallel, substantial amounts of IL-1β and TNF-α were produced by endodontic content-stimulated macrophages. At s2, a significant reduction in endotoxin levels was observed in all groups, with GI presenting the greatest reduction (P < .05). After a root canal rinse with EDTA (s3), intracanal medication (s4), and before root canal obturation (s5), endotoxin levels reduced without differences between groups (P < .05). IL-1β and TNF-α release decreased proportionally to the levels of residual endotoxin (P < .05). Regardless of the use of sodium hypochlorite or CHX, the greatest endotoxin reduction occurs after chemomechanical preparation. Increasing steps of root canal therapy associated with intracanal medication enhances endotoxin reduction, leading to a progressively lower activation of proinflammatory cells such as macrophages.
Resumo:
G-quadruplexes are secondary structures present in DNA and RNA molecules, which are formed by stacking of G-quartets (i.e., interaction of four guanines (G-tracts) bounded by Hoogsteen hydrogen bonding). Human PAX9 intron 1 has a putative G-quadruplex-forming region located near exon 1, which is present in all known sequenced placental mammals. Using circular dichroism (CD) analysis and CD melting, we showed that these sequences are able to form highly stable quadruplex structures. Due to the proximity of the quadruplex structure to exon-intron boundary, we used a validated double-reporter splicing assay and qPCR to analyze its role on splicing efficiency. The human quadruplex was shown to have a key role on splicing efficiency of PAX9 intron 1, as a mutation that abolished quadruplex formation decreased dramatically the splicing efficiency of human PAX9 intron 1. The less stable, rat quadruplex had a less efficient splicing when compared to human sequences. Additionally, the treatment with 360A, a strong ligand that stabilizes quadruplex structures, further increased splicing efficiency of human PAX9 intron 1. Altogether, these results provide evidences that G-quadruplex structures are involved in splicing efficiency of PAX9 intron 1.
Resumo:
Placental tissue injury is concomitant with tumor development. We investigated tumor-driven placental damage by tracing certain steps of the protein synthesis and degradation pathways under leucine-rich diet supplementation in MAC16 tumor-bearing mice. Cell signaling and ubiquitin-proteasome pathways were assessed in the placental tissues of pregnant mice, which were distributed into three groups on a control diet (pregnant control, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid) and three other groups on a leucine-rich diet (pregnant, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid). MAC tumor growth down-regulated the cell-signaling pathways of the placental tissue and decreased the levels of IRS-1, Akt/PKB, Erk/MAPK, mTOR, p70S6K, STAT3, and STAT6 phosphorylated proteins, as assessed by the multiplex Millipore Luminex assay. Leucine supplementation maintained the levels of these proteins within the established cell-signaling pathways. In the tumor-bearing group (MAC) only, the placental tissue showed increased PC5 mRNA expression, as assessed by quantitative RT-PCR, decreased 19S and 20S protein expression, as assessed by Western blot analysis, and decreased placental tyrosine levels, likely reflecting up-regulation of the ubiquitin-proteasome pathway. Similar effects were found in the pregnant injected with MAC-ascitic fluid group, confirming that the effects of the tumor were mimicked by MAC-ascitic fluid injection. Although tumor progression occurred, the degradation pathway-related protein levels were modulated under leucine-supplementation conditions. In conclusion, tumor evolution reduced the protein expression of the cell-signaling pathway associated with elevated protein degradation, thereby jeopardizing placental activity. Under the leucine-rich diet, the impact of cancer on placental function could be minimized by improving the cell-signaling activity and reducing the proteolytic process.
Resumo:
This clinical study assessed the influence of different intracanal medications on Th1-type and Th2-type cytokine responses in apical periodontitis and monitored the levels of bacteria from primarily infection during endodontic procedures. Thirty primarily infected teeth were randomly divided into 3 groups according to the medication selected: chlorhexidine (CHX), 2% CHX gel; Ca(OH)2/SSL, Ca(OH)2 + SSL; and Ca(OH)2/CHX, Ca(OH)2 + 2% CHX gel (all, n = 10). Bacterial sample was collected from root canals, and the interstitial fluid was sampled from lesions. Culture techniques were used to determine bacterial counts (colony-forming units/mL). Th1 (tumor necrosis factor-α, interferon-γ, and interleukin [IL]-2) and Th2 cytokines (IL-4, IL-5, and IL-13) were measured by enzyme-linked immunosorbent assay. All intracanal medication protocols were effective in reducing the bacterial load from root canals (all P < .05) and lowering the levels of Th1-type cytokines in apical lesions (all P < .05), with no differences between them (P > .05). Both Ca(OH)2 treatment protocols significantly increased the levels of Th2-type cytokines (P < .05), with no differences between them (P > .05). Thus, chlorhexidine medication showed the lowest effectiveness in increasing the levels of Th2-type cytokine. After treatment, regardless of the type of medication, the linear regression analysis indicated the down-regulation of Th2-type cytokines by Th1-type cytokines. All intracanal medication protocols were effective in reducing bacterial load and lowering the levels of Th1-type cytokines. Thus, the use of Ca(OH)2 medications contributed to the increase in the Th2-type cytokine response in apical periodontitis.
Resumo:
Vaso-occlusion, responsible for much of the morbidity of sickle-cell disease, is a complex multicellular process, apparently triggered by leukocyte adhesion to the vessel wall. The microcirculation represents a major site of leukocyte-endothelial interactions and vaso-occlusive processes. We have developed a biochip with subdividing interconnecting microchannels that decrease in size (40 μm to 10 μm in width), for use in conjunction with a precise microfluidic device, to mimic cell flow and adhesion through channels of sizes that approach those of the microcirculation. The biochips were utilized to observe the dynamics of the passage of neutrophils and red blood cells, isolated from healthy and sickle-cell anemia (SCA) individuals, through laminin or endothelial adhesion molecule-coated microchannels at physiologically relevant rates of flow and shear stress. Obstruction of E-selectin/intercellular adhesion molecule 1-coated biochip microchannels by SCA neutrophils was significantly greater than that observed for healthy neutrophils, particularly in the microchannels of 40-15 μm in width. Whereas SCA red blood cells alone did not significantly adhere to, or obstruct, microchannels, mixed suspensions of SCA neutrophils and red blood cells significantly adhered to and obstructed laminin-coated channels. Results from this in vitro microfluidic model support a primary role for leukocytes in the initiation of SCA occlusive processes in the microcirculation. This assay represents an easy-to-use and reproducible in vitro technique for understanding molecular mechanisms and cellular interactions occurring in subdividing microchannels of widths approaching those observed in the microvasculature. The assay could hold potential for testing drugs developed to inhibit occlusive mechanisms such as those observed in SCA and thrombotic diseases.
Resumo:
A missense G209A mutation of the alpha-synuclein gene was recently described in a large Contursi kindred with Parkinson's disease (PD). The objective of this study is to determine if the mutation G209A of the alpha-synuclein gene was present in 10 Brazilian families with PD. PD patients were recruited from movement disorders clinics of Brazil. A family history with two or more affected in relatives was the inclusion criterion for this study. The alpha-synuclein G209A mutation assay was made using polymerase chain reaction and the restriction enzyme Tsp45I. Ten patients from 10 unrelated families were studied. The mean age of PD onset was 42.7 years old. We did not find the G209A mutation in our 10 families with PD. Our results suggest that alpha-synuclein mutation G209A is uncommon in Brazilian PD families.
Resumo:
The adsorption capacity of alpha-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methyene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable.