22 resultados para bone implant interactions
Resumo:
Low bone mineral density (BMD) has been found in human immunodeficiency virus (HIV)-infected patients; however, data on associated factors remain unclear, specifically in middle-aged women. This study aims to evaluate factors associated with low BMD in HIV-positive women. In this cross-sectional study, a questionnaire was administered to 206 HIV-positive women aged 40 to 60 years who were receiving outpatient care. Clinical features, laboratory test results, and BMD were assessed. Yates and Pearson χ(2) tests and Poisson multiple regression analysis were performed. The median age of women was 47.7 years; 75% had nadir CD4 T-cell counts higher than 200, and 77.8% had viral loads below the detection limit. There was no association between low BMD at the proximal femur and lumbar spine (L1-L4) and risk factors associated with HIV infection and highly active antiretroviral therapy. Poisson multiple regression analysis showed that the only factor associated with low BMD at the proximal femur and lumbar spine was postmenopause status. Low BMD is present in more than one third of this population sample, in which most women are using highly active antiretroviral therapy and have a well-controlled disease. The main associated factor is related to estrogen deprivation. The present data support periodic BMD assessments in HIV-infected patients and highlight the need to implement comprehensive menopausal care for these women to prevent bone loss.
Resumo:
Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.
Resumo:
Friction coefficient (FC) was quantified between titanium-titanium (Ti-Ti) and titanium-zirconia (Ti-Zr), materials commonly used as abutment and implants, in the presence of a multispecies biofilm (Bf) or salivary pellicle (Pel). Furthermore, FC was used as a parameter to evaluate the biomechanical behavior of a single implant-supported restoration. Interface between Ti-Ti and Ti-Zr without Pel or Bf was used as control (Ctrl). FC was recorded using tribometer and analyzed by two-way Anova and Tukey test (p<0.05). Data were transposed to a finite element model of a dental implant-supported restoration. Models were obtained varying abutment material (Ti and Zr) and FCs recorded (Bf, Pel, and Ctrl). Maximum and shear stress were calculated for bone and equivalent von Misses for prosthetic components. Data were analyzed using two-way ANOVA (p<0.05) and percentage of contribution for each condition (material and FC) was calculated. FC significant differences were observed between Ti-Ti and Ti-Zr for Ctrl and Bf groups, with lower values for Ti-Zr (p<0.05). Within each material group, Ti-Ti differed between all treatments (p<0.05) and for Ti-Zr, only Pel showed higher values compared with Ctrl and Bf (p<0.05). FC contributed to 89.83% (p<0.05) of the stress in the screw, decreasing the stress when the FC was lower. FC resulted in an increase of 59.78% of maximum stress in cortical bone (p=0.05). It can be concluded that the shift of the FC due to the presence of Pel or Bf is able to jeopardize the biomechanical behavior of a single implant-supported restoration.
Resumo:
This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (-0.11 and -0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p> 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data.
Resumo:
179
Resumo:
The MINUS system was developed as a minimally invasive procedure that uses a diaphyseal cephalic extramedullary implant for the treatment of transtrochanteral fractures of the femur in elderly patients. The implant consists of a sliding screw coupled to a plate adapted to the minimally invasive technique. The surgical access is approximately three centimeters in length located on the lateral surface of the hip, below the projection of the small trochanter. A perfectly adapted instrument was used for the procedure, which also requires the use of an image intensifier, reducing surgery time and rate of bleeding. The objective of this study is to present a new instrument and implant, developed specifically for treatment with the minimally invasive technique, reducing the length of the conventional surgical access from 10 to three centimetres. This new implant was given the commercial name of MINUS System.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física