37 resultados para Vegetal fibers
Resumo:
The purpose of this study was to assess whether the adhesive permits the collateral repair of axons originating from a vagus nerve to the interior of a sural nerve graft, and whether low-level laser therapy (LLLT) assists in the regeneration process. Study sample consisted of 32 rats randomly separated into three groups: Control Group (CG; n=8), from which the intact sural nerve was collected; Experimental Group (EG; n=12), in which one of the ends of the sural nerve graft was coapted to the vagus nerve using the fibrin glue; and Experimental Group Laser (EGL; n=12), in which the animals underwent the same procedures as those in EG with the addition of LLLT. Ten weeks after surgery, the animals were euthanized. Morphological analysis by means of optical and electron microscopy, and morphometry of the regenerated fibers were employed to evaluate the results. Collateral regeneration of axons was observed from the vagus nerve to the interior of the autologous graft in EG and EGL, and in CG all dimensions measured were greater and presented a significant difference in relation to EG and EGL, except for the area and thickness of the myelin sheath, that showed significant difference only in relation to the EG. The present study demonstrated that the fibrin glue makes axonal regeneration feasible and is an efficient method to recover injured peripheral nerves, and the use of low-level laser therapy enhances nerve regeneration.
Resumo:
The development of technological routes to convert lignocellulosic biomass to liquid fuels requires an in-depth understanding of the cell wall architecture of substrates. Essential pretreatment processes are conducted to reduce biomass recalcitrance and usually increase the reactive surface area. Quantitative three-dimensional information about both bulk and surface structural features of substrates needs to be obtained to expand our knowledge of substrates. In this work, phase-contrast tomography (PCT) was used to gather information about the structure of a model lignocellulosic biomass (piassava fibers). The three-dimensional cellular organization of piassava fibers was characterized by PCT using synchrotron radiation. This technique enabled important physical features that describe the substrate piassava fibers to be visualized and quantified. The external surface area of a fiber and internal surface area of the pores in a fiber could be determined separately. More than 96% of the overall surface area available to enzymes was in the bulk substrate. The pore surface area and length exhibited a positive linear relationship, where the slope of this relationship depended on the plant tissue. We demonstrated that PCT is a powerful tool for the three-dimensional characterization of the cell wall features related to biomass recalcitrance. Original and relevant quantitative information about the structural features of the analyzed material were obtained. The data obtained by PCT can be used to improve processing routes to efficiently convert biomass feedstock into sugars.
Resumo:
Dystrophin-deficient muscles have repeated cycles of necrosis and regeneration, being susceptible to injury induced by muscle contractions. Some studies have demonstrated that tendons are also affected in mdx mice, based especially on the changes in biomechanical properties arising from the respective linked muscles. However, most studies have focused only on alterations in the myotendinous junction. Thus, the purpose of this work was to study biochemical and morphological alterations in the Achilles tendons of 60-day-old mdx mice. Hydroxyproline quantification, showed higher collagen concentration in the mdx mice as compared with the control. No difference between the tendons of both groups was found in the noncollagenous proteins dosage, and in the amount of collagen type III detected in the western blotting analysis. The zymography for gelatinases detection showed higher amounts of metaloproteinase-2 (active isoform) and of metalloproteinase-9 (latent isoform) in the mdx mice. Measurements of birefringence, using polarization microscopy, showed higher molecular organization of the collagen fibers in the tendons of mdx mice in comparison to the control group, with presence of larger areas of crimp. Ponceau SS-stained tendon sections showed stronger staining of the extracellular matrix in the mdx groups. Toluidine blue-stained sections showed more intense basophilia in tendons of the control group. In morphometry, a higher number of inflammatory cells was detected in the epitendon of mdx group. In conclusion, the Achilles tendon of 60-day-old mdx mice presents higher collagen concentration and organization of the collagen fibers, enhanced metalloproteinase-2 activity, as well as prominent presence of inflammatory cells and lesser proteoglycans.
Resumo:
Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial-stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial-stromal transition are also discussed.
Resumo:
Gaseous mercury sampling conditions were optimized and a dynamic flux chamber was used to measure the air/surface exchange of mercury in some areas of the Negro river basin with different vegetal coverings. At the two forest sites (flooding and non-flooding), low mercury fluxes were observed: maximum of 3 pmol m-2 h-1 - day and minimum of -1 pmol m-2 h-1 - night. At the deforested site, the mercury fluxes were higher and always positive: maximum of 26 pmol m-2 h-1 - day and 17 pmol m-2 h-1 - night. Our results showed that deforestation could be responsible for significantly increasing soil Hg emissions, mainly because of the high soil temperatures reached at deforested sites.
Resumo:
The aim of this work is to obtain, purify and characterize biochemically a peroxidase from Copaifera langsdorffii leaves (COP). COP was obtained by acetone precipitation followed by ion-exchange chromatography. Purification yielded 3.5% of peroxidase with the purification factor of 46.86. The COP optimum pH is 6.0 and the temperature is 35 ºC. COP was stable in the pH range of 4.5 to 9.3 and at temperatures below 50.0 ºC. The apparent Michaelis-Menten constants (Km) for guaiacol and H2O2 were 0.04 mM and 0.39 mM respectively. Enzyme turnover was 0.075 s-1 for guaiacol and 0.28 s-1 for hydrogen peroxide. Copaifera langsdorffii leaves showed to be a rich source of active peroxidase (COP) during the whole year. COP could replace HRP, the most used peroxidase, in analytical determinations and treatment of industrial effluents at low cost.
Resumo:
Inulin is a functional food ingredient, generally employed as sugar or fat substitute in food systems. This ingredient can be found in several vegetal products, including chicory roots. As the solubility of inulin is susceptible to temperature changes, the product suffers a fractionalization resulting in two phases when cooled, originating a precipitated phase, more viscose, and a liquid phase, of lesser viscosity. The study of rheological properties of different phases of inulin extract is important for equipment designing, such as mixer and bombs. In this work, rheological behavior at three different temperatures (25; 40 and 50 ºC) was determined for liquid and precipitated phases of inulin liquid extract, extracted from chicory roots by hot water diffusion and cooled at two different temperatures (8 and -10 ºC), suffering phases separation. The precipitated phase was analyzed in two conditions: pure and with the addition of microencapsulating agents (maltodextrin and hydrolized starch). All of them presented a linear behavior, similar to that of the Plastics of Bingham. Some of them, however, were not an adequate fit to this model.
Resumo:
In the last few years the sugar-cane mechanical harvested area has increased, especially in regions with appropriated slop. The use of this technology brings some inconveniences, such as, the increase in the percentage of extraneous matter, which causes the reduction of technological quality of the raw material, and losses in the field. Extraneous matter (trash) is composed of tops and leaves in major percentage, plus soil and roots, and eventually some metal parts. In the green cane harvest system the percentage of extraneous matter has a tendency to increase due to the great amount of vegetal matter to be processed. The increase in the blower fan speed to reduce the amount of extraneous matter can lead to an unacceptable economic level of raw material losses. The main objective of this work was, using a cane loss monitor, to evaluate and quantify the amount of visible losses of sugar cane through the primary extractor at two different fan speeds. Afterwards these losses were related to the harvester cleaning efficiency. The piezoelectric transducer shows a reasonable sensibility. The results show that the cleaning efficiency in the primary extractor (85% mean), the cane losses (between 5.68% and 2.15%) and fan speed are interrelated. The total losses and specially splinters (between 3.19% and 0.91%), showed a significant difference among the treatments.
Resumo:
Remote sensing data are each time more available and can be used to monitor the vegetal development of main agricultural crops, such as the Arabic coffee in Brazil, since that the relationship between spectral and agronomical data be well known. Therefore, this work had the main objective to assess the use of Quickbird satellite images to estimate biophysical parameters of coffee crop. Test area was composed by 25 coffee fields located between the cities of Ribeirão Corrente, Franca and Cristais Paulista (SP), Brazil, and the biophysical parameters used were row and between plants spacing, plant height, LAI, canopy diameter, percentage of vegetation cover, roughness and biomass. Spectral data were the reflectance of four bands of QUICKBIRD and values of four vegetations indexes (NDVI, GVI, SAVI and RVI) based on the same satellite. All these data were analyzed using linear and nonlinear regression methods to generate estimation models of biophysical parameters. The use of regression models based on nonlinear equations was more appropriate to estimate parameters such as the LAI and the percentage of biomass, important to indicate the productivity of coffee crop.
Resumo:
This paper describes a method for leaf vein shape characterization using Hermite polynomial cubic representation. The elements associated with this representation are used as secondary vein descriptors and their discriminatory potential are analyzed based on the identification of two legume species (Lonchocarpus muehlbergianus Hassl. and L. subglaucescens Mart, ex Benth.). The elements of Hermite geometry influence a curve along all its extension allowing a global description of the secondary vein course by a descriptor of low dimensionality. The obtained results shown the analyzed species can be discriminated by this method and it can be used in addition to commonly considered elements in the taxonomic process.
Resumo:
Is the carrasco on the Ibiapaba plateau a unique plant formation? To answer this question the vertical height (except of climbers) and the stem basal diameter (from 3cm on) of woody plants were measured, and soil extracts (0-50 and 50-100cm depth) were taken from 100 random plots (10x10m) at Jaburuna (3º54'34S and 40º59'24W, altitudes near 830m), municipality of Ubajara, Ceará State. Data on climate, soil, diameter height, density, basal area, and physiognomy were compared with those surveyed by other researchers from the carrasco, caatinga, and cerrado in Northeastern Brazil. The carrasco occurs under an annual rainfall of between 668 and 1,289mm and temperatures from 22 to 24ºC, on alic Quartz Sand soils, at altitudes between 700 and 900m: it has a larger density and a smaller basal area than the caatinga and the cerrado, small and similar diameters, and an average vertical height between 3,7 and 5,4m. It differs from the caatinga, cerrado (and cerradão) and secondary forest in many items of lhe ecotope, organization and physiognomy, thus being a unique plain formation, which can be characterized as a deciduous, high, closed, and unistratified shrubland intermingled by lianas, with an irregular canopy and sparse, emergent trees.
Resumo:
The aim of this work was to describe the morphology and ontogeny of P. riedelii fruits to aid in taxonomic, ecological and phylogenetic studies in Apocynaceae. Fruits were fixed in FAA, embedded in plastic resin, sectioned at 10 ìm and stained with toluidine blue, for structural analysis. The fruit of P. riedelii is a follicarium, with two follicular fruitlets. The epicarp is one-cell-layered, with trichomes and thick cuticle. The mesocarp, originating from fundamental ovary tissue, is parenchymatous with laticifers, non-lignified fibers and vascular bundles. The endocarp sensu lato is two-celllayered of crossed sclereids, originating from the inner ovary epidermis and from a single layer of parenchyma cells of fundamental ovary tissue. Follicle dehiscence is lateral and the dehiscence process involves anatomical characteristics such as a dehiscence zone with thin-walled cells, non-lignified fibers in the mesocarp and crossed sclereids in the endocarp.
Resumo:
Due to its geographical location, the northeastern Coast of Brazil (Litoral Setentrional do Nordeste - LSN) is a hotter and drier climate than the eastern coast. In addition, because of its proximity to caatinga and cerrado, the LSN contains species from these vegetation biomes and from the restinga on the coast, which comprise different plant formations and creates a vegetation complex. Despite the great importance of this ecotone, there are few studies about its flora. The objective of this work was to contribute to what is known about the floristic and phytosociological composition of this region. We made a floristic survey in the area (between 2007 and 2011), consulted herbaria data from the region and made a phytosociological study in a stretch of coastal semideciduous forest (mata de tabuleiro). The study recorded 382 plant species from 96 families. In the phytosociological survey (0.32 ha) we recorded 2,970 individuals and 52 species. The most abundant plants surveyed were the trees Manilkara triflora, Chamaecrista ensiformis and Guapira nitida and the shrubs Cordiera sessilis and Maytenus erythroxyla (average height 3.8 m, average diameter 6.2 cm, basal area 39.28 m²/ha). The local flora includes floristic elements of caatinga, cerrado and restinga, corroborating the idea that the plant community of the coastal region of Ceará has an ecotonal nature.
Resumo:
The presence of vegetal impurities in sugarcane delivered to sugarmills as green and dry leaves is a problem not only because they are non-value materials to be processed along with sugarcane stalks, but also because they can rise the color of the clarified juice and, consequently, the color of the sugar produced, with a reduction of its quality for the market. Another problem is the mud volume sedimented in the clarifiers, which also can result in a larger recirculation and greater volume of filtrate juice, with higher losses of sucrose and utilization of the vacuum rotary filters. The objective of this work was to observe the effect of the presence of green and dry leaves on sugarcane juice clarification, related to a control treatment with the addition of fiber extracted from the stalks. The experiments were planned based on the addition of quantities of fibrous sources in order to formulate samples with absolute increase of 0.25 , 0.50 and 0.75 percentual points over the fiber content of the sugarcane stalks (control treatment). The juice clarification was conducted with a laboratory clarifier. The clarified juice color and the mud volume were evaluated. The presence of green leaves caused higher color and mud volume due to the extraction of non-sucrose components of the leaves. Soluble compounds of dry leaves were also extracted, though not detected by juice analysis. The addition of the fiber extracted from the stalks did not induce alterations in the clarification process.
Resumo:
Low temperatures negatively impact the metabolism of orange trees, and the extent of damage can be influenced by the rootstock. We evaluated the effects of low nocturnal temperatures on Valencia orange scions grafted on Rangpur lime or Swingle citrumelo rootstocks. We exposed six-month-old plants to night temperatures of 20ºC and 8ºC under controlled conditions. After decreasing the temperature to 8ºC, there were decreases in leaf CO2 assimilation, stomatal conductance, mesophyll conductance and CO2 concentration in the chloroplasts, in plant hydraulic conductivity and in the maximum electron transport rate driven ribulose-1,5-bisphosphate (RuBP) regeneration in plants grafted on both rootstocks. However, the effects of low night temperature were more severe in plants grafted on Rangpur rootstock, which also presented reduction in the maximum rate of RuBP carboxylation and in the maximum quantum efficiency of the PSII. In general, irreversible damage due to night chilling was found in the photosynthetic apparatus of plants grafted on Rangpur lime. Low night temperatures induced similar changes in the antioxidant metabolism, preventing oxidative damage in citrus leaves on both rootstocks. As photosynthesis is linked to plant growth, our findings indicate that the rootstock may improve the performance of citrus trees in environments with low night temperatures, with Swingle rootstock improving the photosynthetic acclimation in leaves of orange plants.