21 resultados para Rational useof water
Resumo:
Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.
Resumo:
The cleanness level in fresh market tomatoes cleaning equipment is essential for consumer acceptance and conservation of product quality. However, the washing process in cleaning current equipments demands an excessive volume of water, leading to serious economic and environmental concerns. The objective of this work was to contribute with technical information for the washing system optimization. The conventional washing system currently used in cleaning equipment, which consists of perforated PVC pipes, was compared with a proposed system which uses commercial sprays. Characteristic curves (flow rate versus pressure) for both systems were determined in lab conditions and the respective water consumptions were compared. The results confirmed the excess of water consumption in the conventional washing systems, and the proposed system proved that is possible to reduce it, and the use of sprays allowed the rational use of the water.
Resumo:
The application of sand filters in localized irrigation systems is recommended in the presence of organic and algae contamination. The proper design and maintenance of these equipments are essential to assure an effective water quality control, in order to reduce the emitters clogging, to keep its water application uniformity, and to prevent increasing in the system operation costs. Despite the existence of some references about design, operation and maintenance of these filters, they are dispersed, with not enough details to guarantee the optimization of its hydraulics structure design and the proper selection of porous media to be used. Therefore, the objective of this work was to report a current literature review, relating practical information with scientific knowledge. The content of this review would help to induce and intensify the research on this subject and to contribute so the operational functions for the equipment are reached. It is also expected to assist the improvement of the filtration and flushing processes in the agricultural irrigation and the development of original design procedures and the rational use of these devices.
Resumo:
This work investigated the cytotoxic and genotoxic potential of water from the River Paraíba do Sul (Brazil) using Allium cepa roots. An anatomo-morphological parameter (root length), mitotic indices, and frequency of micronuclei were analysed. Eight bulbs were chosen at random for treatment for 24 to 120 hours with the River water collected in the years of 2005 and 2006 from sites in the cities of Tremembé and Aparecida (São Paulo state, Brazil). Daily measurements of the length of the roots grown from each bulb were carried out throughout the experiment. Mitotic index (MI) and frequency of micronuclei (MN) were determined for 2000 cells per root, using 3-5 root tips from other bulbs (7-10). Only in the roots treated with samples of the River water collected in 2005 in Tremembé city was there a decrease in the root length growth compared to the respective control. However, a reduction in MI values was verified for both sites analysed for that year. Considering the data involving root length growth and especially MI values, a cytotoxic potential is suggested for the water of the River Paraíba do Sul at Tremembé and Aparecida, in the year of 2005. On the other hand, since in this year the MN frequency was not affected with the river water treatments, genotoxicity is not assumed for the river water sampled at the aforementioned places.
Resumo:
Increasing water scarcity and depleted water productivity in irrigated soils are inducing farmers to adopt improved varieties, such as those with high-capacity tolerance. The use of tolerant varieties of sugarcane might substantially avoid the decline of productivity under water deficit. This research aimed to evaluate the harmful effects of drought on the physiology of two sugarcane varieties (RB867515 and RB962962) during the initial development. Young plants were subjected to irrigation suspension until total stomata closure, and then rewatered. Significant reduction on stomatal conductance, transpiration, and net photosynthesis were observed. RB867515 showed a faster stomatal closure while RB962962 slowed the effects of drought on the gas exchanges parameters with a faster recovering after rewatering. Accumulation of carbohydrates, amino acids, proline, and protein in the leaves and roots of the stressed plants occurred in both varieties, substantially linked to reduction of the leaf water potential. Due to the severity of stress, this accumulation was not enough to maintain the cell turgor pressure, so relative water content was diminished. Water stress affected the contents of chlorophyll (a, b, and total) in both varieties, but not the levels of carotenoids. There was a significant reduction in dry matter under stress. In conclusion, RB962962 variety endured stressed conditions more than RB867515, since it slowed down the damaging effects of drought on the gas exchanges. In addition, RB962962 presented a faster recovery than RB867515, a feature that qualifies it as a variety capable of enduring short periods of drought without major losses in the initial stage of its development.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física