39 resultados para Embryo viability
Resumo:
Sensory changes during the storage of coffee beans occur mainly due to lipid oxidation and are responsible for the loss of commercial value. This work aimed to verify how sensory changes of natural coffee and pulped natural coffee are related to the oxidative processes during 15 months of storage. During this period, changes in the content of free fatty acids (1.4-3.8 mg/g oil), TBARS values (8.8-10.2 nmol MDA/g), and carbonyl groups (2.6-3.5 nmol/mg of protein) occurred. The intensity of rested coffee flavour in the coffee brew increased (2.1-6.7) and 5-caffeoylquinic acid concentration decreased (5.2-4.6g/100g). Losses were also observed in seed viability, colour of the beans and cellular structure. All the results of the chemical analyses are coherent with the oxidative process that occurred in the grains during storage. Therefore, oxidation would be also responsible for the loss of cellular structure, seed viability and sensory changes.
Resumo:
Mastocytosis are myeloproliferative neoplasms commonly related to gain-of-function mutations involving the tyrosine kinase domain of KIT. We herein report a case of familial systemic mastocytosis with the rare KIT K509I germ line mutation affecting two family members: mother and daughter. In vitro treatment with imatinib, dasatinib and PKC412 reduced cell viability of primary mast cells harboring KIT K509I mutation. However, imatinib was more effective in inducing apoptosis of neoplastic mast cells. Both patients with familial systemic mastocytosis had remarkable hematological and skin improvement after three months of imatinib treatment, suggesting that it may be an effective front line therapy for patients harboring KIT K509I mutation.
Resumo:
Spores of the tropical mosses Pyrrhobryum spiniforme, Neckeropsis undulata and N. disticha were characterized regarding size, number per capsule and viability. Chemical substances were analyzed for P. spiniforme and N. undulata spores. Length of sporophyte seta (spore dispersal ability) was analyzed for P. spiniforme. Four to six colonies per species in each site (lowland and highland areas of an Atlantic Forest; Serra do Mar State Park, Brazil) were visited for the collection of capsules (2008 - 2009). Neckeropsis undulata in the highland area produced the largest spores (ca. 19 µm) with the highest viability. The smallest spores were found in N. disticha in the lowland (ca. 13 µm). Pyrrhobryum spiniforme produced more spores per capsule in the highland (ca. 150,000) than in lowland (ca. 40,000); longer sporophytic setae in the lowland (ca. 64 mm) than in the highland (ca. 43 mm); and similar sized spores in both areas (ca. 16 µm). Spores of N. undulata and P. spiniforme contained lipids and proteins in the cytoplasm, and acid/neutral lipids and pectins in the wall. Lipid bodies were larger in N. undulata than in P. spiniforme. No starch was recorded for spores. Pyrrhobryum spiniforme in the highland area, different from lowland, was characterized by low reproductive effort, but presented many spores per capsule.
Resumo:
Summary This study aimed to evaluate the impact of vitrification on membrane lipid profile obtained by mass spectrometry (MS) of in vitro-produced bovine embryos. Matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) has been used to obtain individual embryo membrane lipid profiles. Due to conditions of analysis, mainly membrane lipids, most favorably phosphatidylcholines (PCs) and sphingomyelins (SMs) have been detected. The following ions described by their mass-to-charge ratio (m/z) and respective attribution presented increased relative abundance (1.2-20×) in the vitrified group: 703.5 [SM (16:0) + H]+; 722.5 [PC (40:3) + Na]+; 758.5 [PC (34:2) + H]+; 762.5 [PC (34:0) + H]+; 790.5 [PC (36:0) + H]+ and 810.5 [PC (38:4) + H]+ and/or [PC (36:1) + Na]+. The ion with a m/z 744.5 [PCp (34:1) and/or PCe (34:2)] was 3.4-fold more abundant in the fresh group. Interestingly, ions with m/z 722.5 or 744.5 indicate the presence of lipid species, which are more resistant to enzymatic degradation as they contain fatty acyl residues linked through ether type bonds (alkyl ether or plasmalogens, indicated by the lowercase 'e' and 'p', respectively) to the glycerol structure. The results indicate that cryopreservation impacts the membrane lipid profile, and that these alterations can be properly monitored by MALDI-MS. Membrane lipids can therefore be evaluated by MALDI-MS to monitor the effect of cryopreservation on membrane lipids, and to investigate changes in lipid profile that may reflect the metabolic response to the cryopreservation stress or changes in the environmental conditions.
Resumo:
Surgical treatment for enterocutaneous fistulas (EF) frequently fails. Cell therapy may represent a new approach to treatment. Mesenchymal stromal cells (MSCs) have high proliferative and differentiation capacity. This study aimed to investigate whether MSCs could adhere to suture filament (SF), promoting better EF healing. MSCs, 1 × 10(6), from adipose tissue (ATMSCs) were adhered to a Polyvicryl SF by adding a specific fibrin glue formulation. Adhesion was confirmed by confocal and scanning electron microscopy (SEM). A cecal fistula was created in 22 Wistar rats by incising the cecum and suturing the opening to the surgical wound subcutaneously with four separate stitches. The animals were randomly allocated to three groups: control (CG)-five animals, EF performed; injection (IG)-eight animals 1 × 10(6) ATMSCs injected around EF borders; and suture filament (SG): nine animals, sutured with 1 × 10(6) ATMSCs attached to the filaments with fibrin glue. Fistulas were photographed on the operation day and every 3 days until the 21st day and analyzed by two observers using ImageJ Software. Confocal and SEM results demonstrated ATMSCs adhered to SF (ATMSCs-SF). The average reduction size of the fistula area at 21st day was greater for the SG group (90.34%, P < 0.05) than the IG (71.80%) and CG (46.54%) groups. ATMSCs adhered to SF maintain viability and proliferative capacity. EF submitted to ATMSCs-SF procedure showed greater recovery and healing. This approach might be a new and effective tool for EF treatment.
Resumo:
Aeschynomene falcata is an important forage species; however, because of low seed production, it is underutilized as forage species. Aeschynomene is a polyphyletic genus with a challenging taxonomic position. Two subgenera have been proposed, and it is suggested that Aeschynomene can be split in 2 genera. Thus, new markers, such as microsatellite sequences, are desirable for improving breeding programs for A. falcata. Based on transferability and in situ localization, these microsatellite sequences can be applied as chromosome markers in the genus Aeschynomene and closely related genera. Here, we report the first microsatellite library developed for this genus; 11 microsatellites were characterized, with observed and expected heterozygosities ranging from 0.0000 to 0.7143 and from 0.1287 to 0.8360, respectively. Polymorphic information content varied from 0.1167 to 0.7786. The departure from Hardy-Weinberg equilibrium may have resulted from frequent autogamy, which is characteristic of A. falcata. Of the 11 microsatellites, 9 loci were cross-amplified in A. brevipes and A. paniculata and 7 in Dalbergia nigra and Machaerium vestitum. Five of these 7 cross-amplified microsatellites were applied as probes during the in situ hybridization assay and 2 showed clear signals on A. falcata chromosomes, ensuring their viability as chromosome markers.
Resumo:
Photodynamic therapy (PDT) has been proven to be effective in disinfecting root canals. The aim of this present study was to evaluate the effects of PDT on the viability of Enterococcus faecalis using methylene blue (MB) and malachite green (MG) as photosensitizers. Solutions containing E. faecalis (ATCC 29212) were prepared and harvested by centrifugation to obtain cell suspensions, which were mixed with MB and MG. Samples were individually irradiated by the diode laser at a distance of 1mm for 30, 60, or 120 seconds. Colonyforming units (CFU) were determined for each treatment. PDT for 60 and 120 seconds with MG reduced E. faecalis viability significantly. Similar results were obtained when MB was used as photosensitizer. PDT using MB and MG have antibacterial effect against E. faecalis, showing potential to be used as an adjunctive antimicrobial procedure in endodontic therapy.
Resumo:
The aim of this study was to evaluate the degree of conversion (DC) and the cytotoxicity of photo-cured experimental resin composites containing 4-(N,N-dimethylamino)phenethyl alcohol (DMPOH) combined to the camphorquinone (CQ) compared with ethylamine benzoate (EDAB). The resin composites were mechanically blended using 35 wt% of an organic matrix and 65 wt% of filler loading. To this matrix was added 0.2 wt% of CQ and 0.2 wt% of one of the reducing agents tested. 5x1 mm samples (n=5) were previously submitted to DC measurement and then pre-immersed in complete culture medium without 10% (v/v) bovine serum for 1 h or 24 h at 37 °C in a humidifier incubator with 5% CO2 and 95% humidity to evaluate the cytotoxic effects of experimental resin composites using the MTT assay on immortalized human keratinocytes cells. As a result of absence of normal distribution, the statistical analysis was performed using the nonparametric Kruskal-Wallis to evaluate the cytotoxicity and one-way analysis of variance to evaluate the DC. For multiple comparisons, cytotoxicity statistical analyses were submitted to Student-Newman-Keuls and DC analysis to Tukey's HSD post-hoc test (=0.05). No significant differences were found between the DC of DMPOH (49.9%) and EDAB (50.7%). 1 h outcomes showed no significant difference of the cell viability between EDAB (99.26%), DMPOH (94.85%) and the control group (100%). After 24 h no significant difference were found between EDAB (48.44%) and DMPOH (38.06%), but significant difference was found compared with the control group (p>0.05). DMPOH presented similar DC and cytotoxicity compared with EDAB when associated with CQ.
Resumo:
Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.
Resumo:
Neutrophils (PMN) play a central role in host defense against the neglected fungal infection paracoccidioidomycosis (PCM), which is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). PCM is of major importance, especially in Latin America, and its treatment relies on the use of antifungal drugs. However, the course of treatment is lengthy, leading to side effects and even development of fungal resistance. The goal of the study was to use low-level laser therapy (LLLT) to stimulate PMN to fight Pb in vivo. Swiss mice with subcutaneous air pouches were inoculated with a virulent strain of Pb or fungal cell wall components (Zymosan), and then received LLLT (780 nm; 50 mW; 12.5 J/cm2; 30 seconds per point, giving a total energy of 0.5 J per point) on alternate days at two points on each hind leg. The aim was to reach the bone marrow in the femur with light. Non-irradiated animals were used as controls. The number and viability of the PMN that migrated to the inoculation site was assessed, as well as their ability to synthesize proteins, produce reactive oxygen species (ROS) and their fungicidal activity. The highly pure PMN populations obtained after 10 days of infection were also subsequently cultured in the presence of Pb for trials of protein production, evaluation of mitochondrial activity, ROS production and quantification of viable fungi growth. PMN from mice that received LLLT were more active metabolically, had higher fungicidal activity against Pb in vivo and also in vitro. The kinetics of neutrophil protein production also correlated with a more activated state. LLLT may be a safe and non-invasive approach to deal with PCM infection.
Resumo:
Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2μM). Nek5 silenced cells as well as cells expressing a kinase dead version of Nek5, displayed an increase in ROS formation after 4h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells.
Resumo:
Multidrug-resistant microbial infections represent an exponentially growing problem affecting communities worldwide. Photodynamic therapy is a promising treatment based on the combination of light, oxygen, and a photosensitizer that leads to reactive oxygen species production, such as superoxide (type I mechanism) and singlet oxygen (type II mechanism) that cause massive oxidative damage and consequently the host cell death. Indigofera genus has gained considerable interest due its mutagenic, cytotoxic, and genotoxic activity. Therefore, this study was undertaken to investigate the effect of crude extracts, alkaloidal fraction, and isolated substance derived from Indigofera truxillensis in photodynamic antimicrobial chemotherapy on the viability of bacteria and yeast and evaluation of mechanisms involved. Our results showed that all samples resulted in microbial photoactivation in subinhibitory concentration, with indigo alkaloid presenting a predominant photodynamic action through type I mechanism. The use of CaCl2 and MgCl2 as cell permeabilizing additives also increased gram-negative bacteria susceptibility to indigo.
Resumo:
The layer-by-layer technique has been used as a powerful method to produce multilayer thin films with tunable properties. When natural polymers are employed, complicated phenomena such as self-aggregation and fibrilogenesis can occur, making it more difficult to obtain and characterize high-quality films. The weak acid and base character of such materials provides multilayer systems that may differ from those found with synthetic polymers due to strong self-organization effects. Specifically, LbL films prepared with chitosan and silk fibroin (SF) often involve the deposition of fibroin fibrils, which can influence the assembly process, surface properties, and overall film functionality. In this case, one has the intriguing possibility of realizing multilayer thin films with aligned nanofibers. In this article, we propose a strategy to control fibroin fibril formation by adjusting the assembly partner. Aligned fibroin fibrils were formed when chitosan was used as the counterpart, whereas no fibrils were observed when poly(allylamine hydrochloride) (PAH) was used. Charge density, which is higher in PAH, apparently stabilizes SF aggregates on the nanometer scale, thereby preventing their organization into fibrils. The drying step between the deposition of each layer was also crucial for film formation, as it stabilizes the SF molecules. Preliminary cell studies with optimized multilayers indicated that cell viability of NIH-3T3 fibroblasts remained between 90 and 100% after surface seeding, showing the potential application of the films in the biomedical field, as coatings and functional surfaces.
Resumo:
Arrabidaea chica (H&B) Verlot is a plant popularly known as Pariri and this species is a known source of anthocyanins, flavonoids and tannins. This report describes an approach involving enzymatic treatment prior to extraction procedures to enhance A chica crude extract anticancer activity. Anticancer activity in human cancer cell lines in vitro using a 48 h SRB cell viability assay was performed to determine growth inhibition and cytotoxic properties. The final extraction yield without enzyme treatment was higher (24.28%) compared to the enzyme-treated material (19.03%), with an enhanced aglycones anthocyanin ratio as determined by HPLC- DAD and LC-MS with direct infusion.
Resumo:
This work reports an economic evaluation of the dried banana production from an agroindustry located in Guaraqueçaba - PR State, Brazil. The conventional and the organic banana processings were evaluated by comparing the economic viability pointers. The dried organic banana is exported to the Europe and the dried conventional banana is commercialized in the region of Curitiba - PR. Both processings presented positive economic viability, however the dried organic banana presented better indices (TIR 94%, VPL R$ 486,009.39 and benefit cost relation of 2.11) than the conventional dried banana (TIR 14%, VPL R$ 34,668.00 and benefit cost relation of 1.17). The dried organic banana presented a cost of production of R$ 3.64, being 50.1% relative to the expense with insumos and 27% with labour. The dried conventional banana presented a cost of R$ 3.21, being 45.3% for insumos and 31.2% for labour.