17 resultados para Cancer of the duodenum


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Placental tissue injury is concomitant with tumor development. We investigated tumor-driven placental damage by tracing certain steps of the protein synthesis and degradation pathways under leucine-rich diet supplementation in MAC16 tumor-bearing mice. Cell signaling and ubiquitin-proteasome pathways were assessed in the placental tissues of pregnant mice, which were distributed into three groups on a control diet (pregnant control, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid) and three other groups on a leucine-rich diet (pregnant, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid). MAC tumor growth down-regulated the cell-signaling pathways of the placental tissue and decreased the levels of IRS-1, Akt/PKB, Erk/MAPK, mTOR, p70S6K, STAT3, and STAT6 phosphorylated proteins, as assessed by the multiplex Millipore Luminex assay. Leucine supplementation maintained the levels of these proteins within the established cell-signaling pathways. In the tumor-bearing group (MAC) only, the placental tissue showed increased PC5 mRNA expression, as assessed by quantitative RT-PCR, decreased 19S and 20S protein expression, as assessed by Western blot analysis, and decreased placental tyrosine levels, likely reflecting up-regulation of the ubiquitin-proteasome pathway. Similar effects were found in the pregnant injected with MAC-ascitic fluid group, confirming that the effects of the tumor were mimicked by MAC-ascitic fluid injection. Although tumor progression occurred, the degradation pathway-related protein levels were modulated under leucine-supplementation conditions. In conclusion, tumor evolution reduced the protein expression of the cell-signaling pathway associated with elevated protein degradation, thereby jeopardizing placental activity. Under the leucine-rich diet, the impact of cancer on placental function could be minimized by improving the cell-signaling activity and reducing the proteolytic process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial-stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial-stromal transition are also discussed.