55 resultados para Becquer, Gustavo Adolfo
Resumo:
This clinical study has investigated the antigenic activity of bacterial contents from exudates of acute apical abscesses (AAAs) and their paired root canal contents regarding the stimulation capacity by levels of interleukin (IL)-1 beta and tumor necrosis factor alpha (TNF-α) throughout the root canal treatment against macrophage cells. Paired samples of infected root canals and exudates of AAAs were collected from 10 subjects. Endodontic contents were sampled before (root canal sample [RCS] 1) and after chemomechanical preparation (RCS2) and after 30 days of intracanal medication with calcium hydroxide + chlorhexidine gel (Ca[OH]2 + CHX gel) (RCS3). Polymerase chain reaction (16S rDNA) was used for detection of the target bacteria, whereas limulus amebocyte lysate was used to measure endotoxin levels. Raw 264.7 macrophages were stimulated with AAA exudates from endodontic contents sampled in different moments of root canal treatment. Enzyme-linked immunosorbent assays were used to measure the levels of TNF-α and IL-1 beta. Parvimonas micra, Porphyromonas endodontalis, Dialister pneumosintes, and Prevotella nigrescens were the most frequently detected species. Higher levels of endotoxins were found in samples from periapical exudates at RCS1 (P < .005). In fact, samples collected from periapical exudates showed a higher stimulation capacity at RCS1 (P < .05). A positive correlation was found between endotoxins from exudates with IL-1 beta (r = 0.97) and TNF-α (r = 0.88) production (P < .01). The significant reduction of endotoxins and bacterial species achieved by chemomechanical procedures (RCS2) resulted in a lower capacity of root canal contents to stimulate the cells compared with that at RCS1 (P < .05). The use of Ca(OH)2 + CHX gel as an intracanal medication (RCS3) improved the removal of endotoxins and bacteria from infected root canals (P < .05) whose contents induced a lower stimulation capacity against macrophages cells at RCS1, RCS2, and RCS3 (P < .05). AAA exudates showed higher levels of endotoxins and showed a greater capacity of macrophage stimulation than the paired root canal samples. Moreover, the use of intracanal medication improved the removal of bacteria and endotoxins from infected root canals, which may have resulted in the reduction of the inflammatory potential of the root canal content.
Resumo:
Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.
Resumo:
Severe accidents caused by the armed spider Phoneutria nigriventer cause neurotoxic manifestations in victims. In experiments with rats, P. nigriventer venom (PNV) temporarily disrupts the properties of the BBB by affecting both the transcellular and the paracellular route. However, it is unclear how cells and/or proteins participate in the transient opening of the BBB. The present study demonstrates that PNV is a substrate for the multidrug resistance protein-1 (MRP1) in cultured astrocyte and endothelial cells (HUVEC) and increases mrp1 and cx43 and down-regulates glut1 mRNA transcripts in cultured astrocytes. The inhibition of nNOS by 7-nitroindazole suggests that NO derived from nNOS mediates some of these effects by either accentuating or opposing the effects of PNV. In vivo, MRP1, GLUT1 and Cx43 protein expression is increased differentially in the hippocampus and cerebellum, indicating region-related modulation of effects. PNV contains a plethora of Ca(2+), K(+) and Na(+) channel-acting neurotoxins that interfere with glutamate handling. It is suggested that the findings of the present study are the result of a complex interaction of signaling pathways, one of which is the NO, which regulates BBB-associated proteins in response to PNV interference on ions physiology. The present study provides additional insight into PNV-induced BBB dysfunction and shows that a protective mechanism is activated against the venom. The data shows that PNV has qualities for potential use in drug permeability studies across the BBB.
Resumo:
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.
Resumo:
The aim of the present study was to identify factors associated with the occurrence of falls among elderly adults in a population-based study (ISACamp 2008). A population-based cross-sectional study was carried out with two-stage cluster sampling. The sample was composed of 1,520 elderly adults living in the urban area of the city of Campinas, São Paulo, Brazil. The occurrence of falls was analyzed based on reports of the main accident occurred in the previous 12 months. Data on socioeconomic/demographic factors and adverse health conditions were tested for possible associations with the outcome. Prevalence ratios (PR) were estimated and adjusted for gender and age using the Poisson multiple regression analysis. Falls were more frequent, after adjustment for gender and age, among female elderly participants (PR = 2.39; 95% confidence interval (95% CI) 1.47 - 3.87), elderly adults (80 years old and older) (PR = 2.50; 95% CI 1.61 - 3.88), widowed (PR = 1.74; 95% CI 1.04 - 2.89) and among elderly adults who had rheumatism/arthritis/arthrosis (PR = 1.58; 95% CI 1.00 - 2.48), osteoporosis (PR = 1.71; 95% CI 1.18 - 2.49), asthma/bronchitis/emphysema (PR = 1,73; 95% CI 1.09 - 2.74), headache (PR = 1.59; 95% CI 1.07 - 2.38), mental common disorder (PR = 1.72; 95% CI 1.12 - 2.64), dizziness (PR = 2.82; 95% CI 1.98 - 4.02), insomnia (PR = 1.75; 95% CI 1.16 - 2.65), use of multiple medications (five or more) (PR = 2.50; 95% CI 1.12 - 5.56) and use of cane/walker (PR = 2.16; 95% CI 1.19 - 3,93). The present study shows segments of the elderly population who are more prone to falls through the identification of factors associated with this outcome. The findings can contribute to the planning of public health policies and programs addressed to the prevention of falls.
Resumo:
77
Resumo:
Glucocorticoid (GC) therapies may adversely cause insulin resistance (IR) that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase B (AKT) substrate with 160 kDa (AS160) as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK) signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT)-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX) (1 mg/kg body weight) for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented β-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented β-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.
Resumo:
G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75(NTR) and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Both groups treated with G-CSF showed increased p75(NTR) and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. The reduction in p75(NTR) and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF.
Resumo:
Pituitary macroadenomas are rare intracranial tumors. In a few cases, they may present aggressive behavior and invade the sphenoid sinus and nasal cavity, causing unusual symptoms. In this paper, we report an atypical case of pituitary adenoma presenting as a nasal mass. The patient was a 44-year-old woman who had had amenorrhea and galactorrhea for ten months, with associated nasal obstruction, macroglossia and acromegaly. Both growth hormone and prolactin levels were increased. Magnetic resonance imaging showed a large mass originating from the lower surface of the pituitary gland, associated with sella turcica erosion and tumor extension through the sphenoid sinus and nasal cavity. Histopathological analysis demonstrated a chromophobe pituitary adenoma with densely packed rounded epithelial cells, with some atypias and rare mitotic figures. There was no evidence of metastases. Macroadenoma invading the nasal cavity is a rare condition and few similar cases have been reported in the literature. This study contributes towards showing that tumor extension to the sphenoid sinus and nasopharynx needs to be considered and investigated in order to make an early diagnosis when atypical symptoms like nasal obstruction are present.
Resumo:
Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.
Resumo:
Although MRI is utilized for planning the resection of soft-tissue tumors, it is not always capable of differentiating benign from malignant lesions. The risk of local recurrence of soft-tissue sarcomas is increased when biopsies are performed before resection and by inadequate resections. PET associated with computed tomography using fluorodeoxyglucose labeled with fluorine-18 ((18)F-FDG PET/CT) may help differentiate between benign and malignant tumors, thus avoiding inadequate resections and making prior biopsies unnecessary. The purpose of this study was to evaluate the usefulness of (18)F-FDG PET/CT in differentiating benign from malignant solid soft-tissue lesions. Patients with solid lesions of the limbs or abdominal wall detected by MRI were submitted to (18)F-FDG PET/CT. The maximum standardized uptake value (SUVmax) cutoff was determined to differentiate malignant from benign tumors. Regardless of the (18)F-FDG PET/CT results all patients underwent biopsy and surgery. MRI was performed in 54 patients, and 10 patients were excluded because of purely lipomatose or cystic lesions. (18)F-FDG PET/CT was performed in the remaining 44 patients. Histopathology revealed 26 (59%) benign and 18 (41%) malignant soft-tissue lesions. A significant difference in SUVmax was observed between benign and malignant soft-tissue lesions. The SUVmax cutoff of 3.0 differentiated malignant from benign lesions with 100% sensitivity, 83.3% specificity, 89.6% accuracy, 78.3% positive predictive value, and 100% negative predictive value. (18)F-FDG PET/CT seems to be able to differentiate benign from malignant soft-tissue lesions with good accuracy and very high negative predictive value. Incorporating (18)F-FDG PET/CT into the diagnostic algorithm of these patients may prevent inadequate resections and unnecessary biopsies.
Resumo:
THE PURPOSE OF THIS STUDY WAS TO PROPOSE A SPECIFIC LACTATE MINIMUM TEST FOR ELITE BASKETBALL PLAYERS CONSIDERING THE: Running Anaerobic Sprint Test (RAST) as a hyperlactatemia inductor, short distances (specific distance, 20 m) during progressive intensity and mathematical analysis to interpret aerobic and anaerobic variables. The basketball players were assigned to four groups: All positions (n=26), Guard (n= 7), Forward (n=11) and Center (n=8). The hyperlactatemia elevation (RAST) method consisted of 6 maximum sprints over 35 m separated by 10 s of recovery. The progressive phase of the lactate minimum test consisted of 5 stages controlled by an electronic metronome (8.0, 9.0, 10.0, 11.0 and 12.0 km/h) over a 20 m distance. The RAST variables and the lactate values were analyzed using visual and mathematical models. The intensity of the lactate minimum test, determined by a visual method, reduced in relation to polynomial fits (2nd degree) for the Small Forward positions and General groups. The Power and Fatigue Index values, determined by both methods, visual and 3rd degree polynomial, were not significantly different between the groups. In conclusion, the RAST is an excellent hyperlactatemia inductor and the progressive intensity of lactate minimum test using short distances (20 m) can be specifically used to evaluate the aerobic capacity of basketball players. In addition, no differences were observed between the visual and polynomial methods for RAST variables, but lactate minimum intensity was influenced by the method of analysis.
Resumo:
The SLC8A1 gene, which encodes the Na(+)/Ca(2+) exchanger, plays a key role in calcium homeostasis. Our previous gene expression oligoarray data revealed SLC8A1 underexpression in penile carcinoma (PeCa). The aim of this study was to investigate whether the dysregulation of SLC8A1 expression is associated with apoptosis and cell proliferation in PeCa, via modulation of calcium concentration. The underlying mechanisms of SLC8A1 underexpression were also explored, focusing on copy number alteration and microRNA. Transcript levels of SLC8A1 gene and miR-223 were evaluated by quantitative PCR, comparing PeCa samples with normal glans tissues. SLC8A1 copy number was evaluated by microarray-based comparative genomic hybridization (array-CGH). Caspase-3 and Ki-67 immunostaining, as well as calcium distribution by Laser Ablation Imaging Inductively Coupled Plasma Mass Spectrometry [LA(i)-ICP-MS], were investigated in both normal and tumor samples. Confirming our previous data, SLC8A1 underexpression was detected in PeCa samples (P=0.001) and was not associated with gene copy number loss. In contrast, overexpression of miR-223 (P=0.002) was inversely correlated with SLC8A1 (P=0.015, r=-0.426), its putative repressor. In addition, SLC8A1 underexpression was associated with decreased calcium distribution, high Ki-67 and low caspase-3 immunoexpression in PeCa when compared with normal tissues. Down-regulation of the SLC8A1 gene, most likely mediated by its regulator miR-223, can lead to reduced calcium levels in PeCa and, consequently, to suppression of apoptosis and increased tumor cell proliferation. These data suggest that the miR-223-NCX1-calcium-signaling axis may represent a potential therapeutic approach in PeCa.
Resumo:
Passiflora species are distributed throughout Latin America, and Brazil and Colombia serve as the centers of diversity for this genus. We performed cross-species amplification to evaluate 109 microsatellite loci in 14 Passiflora species and estimated the diversity and genetic structure of Passiflora cincinnata, Passiflora setaceae and Passiflora edulis. A total of 127 accessions, including 85 accessions of P. edulis, a commercial species, and 42 accessions of 13 wild species, were examined. The cross-species amplification was effective for obtaining microsatellite loci (average cross-amplification of 70%). The average number of alleles per locus (five) was relatively low, and the average diversity ranged from 0.52 in P. cincinnata to 0.32 in P. setacea. The Bayesian analyses indicated that the P. cincinnata and P. setacea accessions were distributed into two groups, and the P. edulis accessions were distributed into five groups. Private alleles were identified, and suggestions for core collections are presented. Further collections are necessary, and the information generated may be useful for breeding and conservation.
Resumo:
Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation.