272 resultados para Copyright Enforcement
Resumo:
In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.
Resumo:
The establishment of the most stable structures of eight membered rings is a challenging task to the field of conformational analysis. In this work, a series of 2-halocyclooctanones were synthesized (including fluorine, chlorine, bromine and iodine derivatives) and submitted to conformational studies using a combination of theoretical calculation and infrared spectroscopy. For each compound, four conformations were identified as the most important ones. These conformations are derived from the chair-boat conformation of cyclooctanone. The pseudo-equatorial (with respect to the halogen) conformer is preferred in vacuum and in low polarity solvents for chlorine, bromine and iodine derivatives. For 2-fluorocyclooctanone, the preferred conformation in vacuum is pseudo-axial. In acetonitrile, the pseudo-axial conformer becomes the most stable for the chlorine derivative. According to NBO calculations, the conformational preference is not dictated by electron delocalization, but by classical electrostatic repulsions.