47 resultados para blood response
Resumo:
Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.
Resumo:
In this study, we hypothesized that blunting of the natriuresis response to intracerebroventricularly (i.c.v.) microinjected cholinergic and adrenergic agonists is involved in the development of hypertension in spontaneously hypertensive rats (SHR). We evaluated the effect of i.c.v. injection of cholinergic and noradrenergic agonists, at increasing concentrations, and of muscarinic cholinergic and α1 and α2-adrenoceptor antagonists on blood pressure and urinary sodium handling in SHR, compared with age-matched Wistar Kyoto rats (WR). We confirmed that CCh and NE microinjected into the lateral ventricle (LV) of conscious rats leads to enhanced natriuresis. This response was associated with increased proximal and post-proximal sodium excretion accompanied by an unchanged rate of glomerular filtration. We showed that cholinergic-induced natriuresis in WR and SHR was attenuated by previous i.c.v. administration of atropine and was significantly lower in the hypertensive strain than in WR. In both groups the natriuretic effect of injection of noradrenaline into the LV was abolished by previous local injection of an α1-adrenoceptor antagonist (prazosin). Conversely, LV α2-adrenoceptor antagonist (yohimbine) administration potentiated the action of noradrenaline. The LV yohimbine pretreatment normalized urinary sodium excretion in SHR compared with age-matched WR. In conclusion, these are, as far as we are aware, the first results showing the importance of interaction of central cholinergic and/or noradrenergic receptors in the pathogenesis of spontaneous hypertension. These experiments also provide good evidence of the existence of a central adrenergic mechanism consisting of α1 and α2-adrenoceptors which works antagonistically on regulation of renal sodium excretion.
Resumo:
Oxidative stress and inflammatory processes strongly contribute to pathogenesis in Duchenne muscular dystrophy (DMD). Based on evidence that excess iron may increase oxidative stress and contribute to the inflammatory response, we investigated whether deferoxamine (DFX), a potent iron chelating agent, reduces oxidative stress and inflammation in the diaphragm (DIA) muscle of mdx mice (an experimental model of DMD). Fourteen-day-old mdx mice received daily intraperitoneal injections of DFX at a dose of 150 mg/kg body weight, diluted in saline, for 14 days. C57BL/10 and control mdx mice received daily intraperitoneal injections of saline only, for 14 days. Grip strength was evaluated as a functional measure, and blood samples were collected for biochemical assessment of muscle fiber degeneration. In addition, the DIA muscle was removed and processed for histopathology and Western blotting analysis. In mdx mice, DFX reduced muscle damage and loss of muscle strength. DFX treatment also resulted in a significant reduction of dystrophic inflammatory processes, as indicated by decreases in the inflammatory area and in NF-κB levels. DFX significantly decreased oxidative damage, as shown by lower levels of 4-hydroxynonenal and a reduction in dihydroethidium staining in the DIA muscle of mdx mice. The results of the present study suggest that DFX may be useful in therapeutic strategies to ameliorate dystrophic muscle pathology, possibly via mechanisms involving oxidative and inflammatory pathways.
Resumo:
The aim of the study was to analyze the frequency of epidermal growth factor receptor (EGFR) mutations in Brazilian non-small cell lung cancer patients and to correlate these mutations with response to benefit of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Our cohort consisted of prospective patients with NSCLCs who received chemotherapy (platinum derivates plus paclitaxel) at the [UNICAMP], Brazil. EGFR exons 18-21 were analyzed in tumor-derived DNA. Fifty patients were included in the study (25 with adenocarcinoma). EGFR mutations were identified in 6/50 (12 %) NSCLCs and in 6/25 (24 %) adenocarcinomas; representing the frequency of EGFR mutations in a mostly self-reported White (82.0 %) southeastern Brazilian population of NSCLCs. Patients with NSCLCs harboring EGFR exon 19 deletions or the exon 21 L858R mutation were found to have a higher chance of response to platinum-paclitaxel (OR 9.67 [95 % CI 1.03-90.41], p = 0.047). We report the frequency of EGFR activating mutations in a typical southeastern Brazilian population with NSCLC, which are similar to that of other countries with Western European ethnicity. EGFR mutations seem to be predictive of a response to platinum-paclitaxel, and additional studies are needed to confirm or refute this relationship.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.
Resumo:
Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.
Resumo:
There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.
Resumo:
40
Resumo:
69
Resumo:
Obesity is associated with development of the cardiorenal metabolic syndrome, which is a constellation of risk factors, such as insulin resistance, inflammatory response, dyslipidemia, and high blood pressure that predispose affected individuals to well-characterized medical conditions such as diabetes, cardiovascular and kidney chronic disease. The study was designed to establish relationship between metabolic and inflammatory disorder, renal sodium retention and enhanced blood pressure in a group of obese subjects compared with age-matched, lean volunteers. The study was performed after 14 h overnight fast after and before OGTT in 13 lean (BMI 22.92 ± 2.03 kg/m(2)) and, 27 obese (BMI 36.15 ± 3.84 kg/m(2)) volunteers. Assessment of HOMA-IR and QUICKI index were calculated and circulating concentrations of TNF-α, IL-6 and C-reactive protein, measured by immunoassay. THE STUDY SHOWS THAT A HYPERINSULINEMIC (HI: 10.85 ± 4.09 μg/ml) subgroup of well-characterized metabolic syndrome bearers-obese subjects show higher glycemic and elevated blood pressure levels when compared to lean and normoinsulinemic (NI: 5.51 ± 1.18 μg/ml, P < 0.027) subjects. Here, the combination of hyperinsulinemia, higher HOMA-IR (HI: 2.19 ± 0.70 (n = 12) vs. LS: 0.83 ± 0.23 (n = 12) and NI: 0.98 ± 0.22 (n = 15), P < 0.0001) associated with lower QUICKI in HI obese when compared with LS and NI volunteers (P < 0.0001), suggests the occurrence of insulin resistance and a defect in insulin-stimulated peripheral action. Otherwise, the adiponectin measured in basal period was significantly enhanced in NI subjects when compared to HI groups (P < 0.04). The report also showed a similar insulin-mediated reduction of post-proximal urinary sodium excretion in lean (LS: 9.41 ± 0.68% vs. 6.38 ± 0.92%, P = 0.086), and normoinsulinemic (NI: 8.41 ± 0.72% vs. 5.66 ± 0.53%, P = 0.0025) and hyperinsulinemic obese subjects (HI: 8.82 ± 0.98% vs. 6.32 ± 0.67%, P = 0.0264), after oral glucose load, despite elevated insulinemic levels in hyperinsulinemic obeses. In conclusion, this study highlights the importance of adiponectin levels and dysfunctional inflammatory modulation associated with hyperinsulinemia and peripheral insulin resistance, high blood pressure, and renal dysfunction in a particular subgroup of obeses.
Resumo:
Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.
Resumo:
to investigate the pulmonary response to exercise of non-morbidly obese adolescents, considering the gender. a prospective cross-sectional study was conducted with 92 adolescents (47 obese and 45 eutrophic), divided in four groups according to obesity and gender. Anthropometric parameters, pulmonary function (spirometry and oxygen saturation [SatO2]), heart rate (HR), blood pressure (BP), respiratory rate (RR), and respiratory muscle strength were measured. Pulmonary function parameters were measured before, during, and after the exercise test. BP and HR were higher in obese individuals during the exercise test (p = 0.0001). SatO2 values decreased during exercise in obese adolescents (p = 0.0001). Obese males had higher levels of maximum inspiratory and expiratory pressures (p = 0.0002) when compared to obese and eutrophic females. Obese males showed lower values of maximum voluntary ventilation, forced vital capacity, and forced expiratory volume in the first second when compared to eutrophic males, before and after exercise (p = 0.0005). Obese females had greater inspiratory capacity compared to eutrophic females (p = 0.0001). Expiratory reserve volume was lower in obese subjects when compared to controls (p ≤ 0,05). obese adolescents presented changes in pulmonary function at rest and these changes remained present during exercise. The spirometric and cardiorespiratory values were different in the four study groups. The present data demonstrated that, in spite of differences in lung growth, the model of fat distribution alters pulmonary function differently in obese female and male adolescents.
Resumo:
Assessment of central blood pressure (BP) has grown substantially over recent years because evidence has shown that central BP is more relevant to cardiovascular outcomes than peripheral BP. Thus, different classes of antihypertensive drugs have different effects on central BP despite similar reductions in brachial BP. The aim of this study was to investigate the effect of nebivolol, a β-blocker with vasodilator properties, on the biochemical and hemodynamic parameters of hypertensive patients. Experimental single cohort study conducted in the outpatient clinic of a university hospital. Twenty-six patients were recruited. All of them underwent biochemical and hemodynamic evaluation (BP, heart rate (HR), central BP and augmentation index) before and after 3 months of using nebivolol. 88.5% of the patients were male; their mean age was 49.7 ± 9.3 years and most of them were overweight (29.6 ± 3.1 kg/m2) with large abdominal waist (102.1 ± 7.2 cm). There were significant decreases in peripheral systolic BP (P = 0.0020), diastolic BP (P = 0.0049), HR (P < 0.0001) and central BP (129.9 ± 12.3 versus 122.3 ± 10.3 mmHg; P = 0.0083) after treatment, in comparison with the baseline values. There was no statistical difference in the augmentation index or in the biochemical parameters, from before to after the treatment. Nebivolol use seems to be associated with significant reduction of central BP in stage I hypertensive patients, in addition to reductions in brachial systolic and diastolic BP.
Resumo:
In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms.
Resumo:
β-Carotene, zeaxanthin, lutein, β-cryptoxanthin, and lycopene are liposoluble pigments widely distributed in vegetables and fruits and, after ingestion, these compounds are usually detected in human blood plasma. In this study, we evaluated their potential to inhibit hemolysis of human erythrocytes, as mediated by the toxicity of peroxyl radicals (ROO•). Thus, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) was used as ROO• generator and the hemolysis assay was carried out in experimental conditions optimized by response surface methodology, and successfully adapted to microplate assay. The optimized conditions were verified at 30 × 10(6) cells/mL, 17 mM of AAPH for 3 h, at which 48 ± 5% of hemolysis was achieved in freshly isolated erythrocytes. Among the tested carotenoids, lycopene (IC(50) = 0.24 ± 0.05 μM) was the most efficient to prevent the hemolysis, followed by β-carotene (0.32 ± 0.02 μM), lutein (0.38 ± 0.02 μM), and zeaxanthin (0.43 ± 0.02 μM). These carotenoids were at least 5 times more effective than quercetin, trolox, and ascorbic acid (positive controls). β-Cryptoxanthin did not present any erythroprotective effect, but rather induced a hemolytic effect at the highest tested concentration (3 μM). These results suggest that selected carotenoids may have potential to act as important erythroprotective agents by preventing ROO•-induced toxicity in human erythrocytes.